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Why a machine learning model for Agency MBS?
• Prepayment is a highly complex and non-linear process  with idiosyncratic nature

• Recent development in computational hardware enable us to complete large amount of computation in short 
time

• Machine learning models have excelled in many areas, such as image recognition, natural language processing, 
fraud detection, etc.

What is the model and what have we learned?

• Deep neural network model applied to pool level agency MBS prepayment data, compared with MSCI1 (the 

human model)

• Preliminary results show the deep learning model is able to capture very complex prepayment patterns and 

signals with extremely high computational efficiency

Conclusion and next step

SUMMARY: NEURAL NETWORKS AGENCY MBS PREPAYMENT MODEL
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• Consumer credit risk models via Machine-Learning Algorithms (Dr. Andrew Lo, 2010)

Using machine-learning model for consumer credit  delinquency and default

Generalized classification and regression trees

Accurately  forecasted credit events 3 to 12 months in advance

• Risk and risk management in credit card industry  (Dr. Andrew Lo, 2016)

Analyzed very large dataset consisting of credit card data from six large banks.

Decision trees and random forests model perform better than logistic regression at short time horizon

• Deep learning for mortgage risk (Dr. Kay Giesechke, 2015-2018)

Using deep neural network to model mortgage prepayment, delinquency and foreclosure

Loan level data

Compared NNM with a logit model 

• Machine Learning and Alternative Data Approach to Investing (JPM,2017)  

Comprehensive guide for apply machine learning  to solve financial problem

MACHINE LEARNING IN FINANCE
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US BOND MARKET
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Forecast prepayment rate for agency RMBS pools

SMM : Single Monthly Mortality Rate

CPR: Conditional Prepayment Rate

Agencies report previous month’s prepayment speed on the 4th business day of each 
month.

Prepayment types:

─ Rate refinance

─ House turnover

─ Cash-out

─ Curtailment

─ Buyout

MODELING OBJECTIVE

6



Difficulties with mortgage prepayment modeling

• Large data sets: ~20-2000 G data, Agency MBS covers ~400,000 pools/100+mm loans 
performance over 20-30 years, pool/loan variables ~30-100

• Multiple, highly non-linear and interactive risk drivers  (“layered risk”)

• Loan size vs. prepayment is function of moneyness

• Age vs. prepayment is function of past moneyness history

• Loan purpose (refi vs purchase) vs. prepayment is function of origination year

• ….

• Regime changes

• Mortgage credit and borrower risk appetite cycles, business practice and policies can all 
affect absolute level and risk drivers for prepayment/default

MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP
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MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP
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MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP
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The HARP program caused temporary inversion of the CLTV Prepayment Curve

HARP: Home Affordable Refinance Program



MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP
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MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP
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Example of modeling:
Assume ppm (pool, time) = f(X1, X2, X3,…. Xn)  …

start by assuming separable risk factor: ppm= f1(x1)*f2(x2)….   Until (often) proven 
incorrect…

estimating  f1(x1)  by “building cohort”, by bucketing loans/pools for groups of x1, but similar 
x2, x3….

(this further assumes quasi linear property of x2, x3….   Average(f2(x2) f3(x3)…)= f2(ave(x2))* 
f3(ave(x3))….

…..  Checking overall fit after all Xn are fitted,  adding extra variables to deal with non-linear and 
interactive variables…  this often does not lead to convergence …

• Time consuming and non-standard approaches
• Experience and step-by-step / regime-by-regime progress are valued

• Can new techniques in machine-learning modeling provide the much needed disruption?

MORTGAGE PREPAYMENT MODELING: SCIENCE AND CRAFTSMANSHIP
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Network architecture:

Hyper-parameters
Number of layers, batch size, learning rate, max-norm constraint, dropout rate, …

Ensemble techniques:
Bagging:  minimum MSE of different realizations and neural networks
Boosting: Fine tune a neural network via changing a few hyper-parameters

FEED FORWARD NEURAL NETWORK



Deep neural network fitting

2003-2018 30yr agency MBS data (~25G data)

30+ input variables: pool attributes, macro-economic variables

To reduce complexity of machine model, we added incentive, 1 regime 
indicators, and 1 policy indicator (HARP)

1 round of fitting can be completed in ~ 3 hours on a GPU machine

BUILDING NEURAL NETWORK MODEL

EDA Feature 
selection

Build 
model

Performance 
Evaluation 

1,information value  
2.correlation matrix
3.domain knowledge

1,error tracking 
2.sensitivity 
3. transparency tool (deeplift)

1. link weights
2. hyper-parameters

1, sanity check
2. data cleansing
3. data transformation



MODEL DRIVERS
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WALA Weighted Average Loan Age

WAC Weighted Average Coupon

CLNSZ Current Average Loan Size

OLTV Original Loan to Value 

Refi% Percentage of Refinanced Loans by UPB

SecHome% Percentage of Second Home Loans by UPB

MultiFamily% Percentage of Muti Family Loans by UPB

Investor% Percentage of Investor Loans by UPB

TPO% Percentage of Third party origination by UPB

AOL Original Average Loan Size

LNSZ_Q4 Max original loan size

LNSZ_Q3 Max original Loan Size - 3rd Quartile

LNSZ_Q1 Max original Loan Size - 1st Quartile

Geo_CA% Percentage of California Loans by UPB

Geo_FL% Percentage of Florida Loans by UPB

Geo_TX% Percentage of Taxas Loans by UPB

Geo_NY% Percentage of New York Loans by UPB

Geo_NE% Percentage of New England Region Loans by UPB

Geo_NO% Percentage of North Region Loans by UPB

Geo_SO% Percentage of South region Loans by UPB

Geo_PC% Percentage of Pacific region Loans by UPB

Geo_AT% Percentage of Atlantic region Loans by UPB

Geo_NONUS% Percentage of non-US region Loans by UPB

Seasonality Calendar month

Independent variables

Incentive WAC - Mortgage Rate(t)

Rolling Incentive Average Incentive ( 20month)

Loan size dispersion (LNSZ_Q3-LNSZ_Q1)/AOL

SATO Spread-at_origination = WAC - Mortgage Rate(0)

HPA House Price Appreciation ( HPI(t)/HPI(0)-1 )

HARP-able

1: IssueMonth <= Jun. 2009 and factor date between Mar. 2009 

and Dec. 2011

2: IssueMonth <= Jun. 2009 and factor date > Dec. 2011

HARP-ed Refi% = 100 and OLTV > 80 and issueMonth > Jun. 2009

Underwritting standard 0: before 2008, 1: after 2008

cBal Current Balance

Prepayment speed Prepayment speed in SMM

Derived Variables

Weight

Dependent Variable

                       
               

   



AGENCY 30YR UNIVERSE SPEEDS ERROR TRACKING
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• Training Data:  2003 – Dec. 2015.  Random sample 10% pools.
• Error tracking is generated using out-of-the-sample pools. 



OUT-OF-SAMPLE FORECASTS
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• True out-of-time and out-of-sample test.
• Overall fitting is good in out-of-sample test
• Missed the refi wave in second half of 2016



MODEL RISK FACTORS
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MODEL BURNOUT

19

NNM and actual prepayment speeds against average incentive in prior 20 months



MODEL POOL VARIABLES VS “HUMAN”MODEL
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NNM and Hmodel Error Tracking against State Variables

NNM accurately captured state-level prepayment behaviors



MODEL POOL VARIABLES VS HUMAN MODEL
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Ranking-Based Sample Error Tracking for Coupon 4s

• Ranking based error tracking methodology provides a comprehensive measure 
of model accuracy across all pool variables

• NNM performed better than Hmodel 



MODEL POOL VARIABLES VS HUMAN MODEL
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Sample ranking-based error tracking at different time point



MODEL HARP EFFECTIVENESS
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NNM is able to pick up the general trend of HARP effectiveness but missed the 
complexity of its revolution

Back

Error Tracking against HARP effectiveness across CLTV Cohorts



MODEL SENSITIVITY
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Model prepayment sensitivity to loan sizes and refinance Incentives

NNM captured the prepayment behavior for loan size 



“MEDIA EFFECT”
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Cohort Observation Range CPR WALA SATO CLTV CLNSZ Incentive FICO Avg.UPB(bn)

FH 3.5 2011 Jul.12 - Dec. 12 16.1 13 -5 77 212258 52 770 2.91

FH 4 2010 Nov. 11 - Feb. 12 13.9 15 3 78 201901 45 767 6.26

FH 3.5 2011 Jul.2012 - Dec. 12 21.9 12 -3 76 235847 50 770 4.04

FH 4 2010 Nov. 11 - Feb. 12 16.4 16 3 78 224734 45 765 8.66

FH 3.5 2011 Jul.12 - Dec. 12 29.2 12 -2 66 216270 54 771 7.31

FH 4 2010 Nov. 11 - Feb. 12 15.3 15 11 70 208962 52 766 30.89

FH 3.5 2011 Jul.12 - Dec. 12 46.1 12 -8 64 269298 46 773 9.58

FH 4 2010 Nov. 11 - Feb. 12 26.2 15 2 69 245496 44 767 23.02

Refi/TPO

FH 2011 3.5 vs 2010 4 comparisons, across TPO/Retail and Refi/Purchase combinations

Purchase/Retail

Purchase/TPO

Refi/Retail

2011 3.5s and 2010 4s prepayment speeds 
are compared across loan attributes, loan 
purpose and origination channel 

3.5s is much faster than 4s given similar 
loan attributes and incentive



MODEL “MEDIA EFFECT”
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2012 Vintage in 2012 refinance wave 2015 Vintage in 2016 refinance wave



CONCLUSION
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NN model vs. “Human Model”

• Accurate forecast and prepayment anomalies flag
• Accurate model of large numbers of risk factors
• Accurate model of highly non-linear and interactive risk factors
• Highly efficient modeling process - hundreds times of increases in modeling 

efficiency 

Next step
• Apply state-of-the-art methodology/techniques to gain model transparency
• Addressing model overfitting, true out-sample and model specification risk issues
• Incorporate neural networks in Agency MBS modeling practice
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MODEL ERROR TRACKING

30

In-time
Out-of-sample
(1/2003-12/2015)

Out-of-time
Out-of-sample 
(1/2016-4/2018)

1. All attributes statistics are very 
close on July and August 2016 
except CPR.

2. Risk driver is missing, i.e., media 
effect or regime change



MODEL ERROR TRACKING
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In-time
Out-of-sample
(1/2003-10/2016)

Out-of-time
Out-of-sample 
(11/2016-4/2018)



MODEL ERROR TRACKING
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In-time
Out-of-sample
(1/2003-10/2016)

Out-of-time
Out-of-sample 
(11/2016-4/2018)

When Increase weights on
8/2016 – 10/2016 by 40 times 
in training:
1. Better in the early stage 

of out-of-time test
2. Sacrifice other period.



MODEL ERROR TRACKING
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In-time
Out-of-sample
(1/2003-10/2017)

Out-of-time
Out-of-sample 
(10/2017-4/2018)



TRADITIONAL VS.. DEEP MACHINE LEARNING

Traditional learning algorithm Deep Learning

Pros Cons Pros Cons

Works better on smaller 
data

Hard to scale state-of-the-art for certain
domains, such as computer 
vision and speech recognition. 

require large amount of data.

Financially and 
computationally cheap

Lack of variability Perform very well on image, 
audio, and textual data, Easily 
updated with new data 

Not suitable for classical 
machine learning problems. 

Algorithms are easier to 
interpret, have more 
theories to back them up

Labor intensive model 
maintenance

Versatile architecture and low 
overhead maintenance 

Computationally intensive to 
train, and they require much 
more expertise to tune 

Identify 
problems

Set 
benchmarks

Train models
Compare 

performance
Choose 
model

Optimize 
model

Deploy



Feed forward neural network (FNN) 

the information moves in only forward direction from the input nodes to the output nodes. There are no 
cycles or loops in the network.;

Deep FNN consists of tens of layers and thousands of nodes; the simplest kind of FNN is logistic model

Recurrent Neural Network (RNN) 

A class of neural networks exploit the historical input sequences. Such inputs could be text, speech, time 
series, and anything else where the occurrence of an input in the sequence is dependent on the inputs 
that appeared before it

Motivation: Not all problems can be converted into one with fixed length inputs and outputs, such as 
text translation, speech recognition or time-series; predictions require a system to store and use context 
information

The input at time t include both the attributes at t and the intermediate values containing history at t-1.

NEURAL NETWORKS MODEL

Feedforward Neural NetworkLogistic  Model Recurrent Neural Network


