R [intreduction 77T

m 2 Brief overview of
methods of machine
learning

CodPy : a Python library for machine learning,
mathematical finance, and statistics

]

3 Kernel and
differentiation techniques
for machine learning

Philippe G. LeFloch! , Jean-Mare Mercier, and Shohruh Miryusupov®

4 Kernel methods for
optimal transportation

5 Supervised Machine
Learning applications

2021-06-04

6 Unsupervised Machine
Learning Applications

[ Optimal transportations
applications

8 Partial Differential
Equations Applications

O O IO &0 O

M PG ,



Activities : MPG Partners is a

—~
@ BPCE BNP PARIBAS

mid-sized French consulting X a2
firm specialized in risk A T s
management : ~ 50 employees
N\ rry - / 22 clients

Small size R&D team
° Jea n‘MarC MerCier jean-marc.mercier@mpg-partners.com
¢ ShOhrUh Miryusu pOV shohruh.miryusupov @mpg-partners.com

Philippe LeFloch

contact@philippelefloch.org

Q SORBONNE
b UNIVERSITE
HMPG 2




CodPy is a python library

kernel-based (RKHS - Reproducing Kernel Hilbert Space).

C++ core / python or graph database (xquery / xml based) interface

* Compete with

Tensorflow, Pytorch, Theano, scikit-learn, xgboost, ADA boost, k-trees,

Random Forest,...)

(Artificial Intelligence, Neural Networks, Deep Learning, Support Vector Machine, k-

trees, etc...)

* Users : 2014 - today : internal library. Tomorrow : public access ? (pip install

CodPy) ?

* Our user manuals are publicly available (see last slide - bibliography)
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learning methods
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supervised learning methods :
A methodology to benchmark them all

e I € RNw XD training set. > [] 1ntroduction

v [] 2Brief overview of
methods of machine

Prediction function f, = P(x,y,z, f(z)) *ve®"" weightset. -

[] 2.1 A framework for

N.xD machine learning
¢ E R z teSt Set [] 2.2 Exploratory data
analysis
N.xD . [ 23 performance
. . . . o . o f(fl?) € R * f mlﬂtl_valued indicators for machine
STEP I: pick up some libraries, and start setting their inner parameters leaming
methodology for
. ised learning:
- Xgboost settings Kimple xamp
Neural Networks settings g g : ;'?Eee:ampkes
= ' - .J BENChmar
import tensorflow as ti xgh_param = 1 max_depth P methodology for
tf_param = {'spochs': 10 ‘n_estimators’: 10, unsupervised learning:
"::;-'l' R ' . ‘nunll_c1 EIlSS' : 10, _ simple examples
i 04 Random Forest settings "objective’: 'multi:softmax’, ) ] 3Kemel g
S H{EEAD SEAdg ‘eta’: 0.3 B :
SR . . e JEE de3s , differentiation tech
Il-}f? f tf:]lia;ai.lossas.spe_ursaﬂatzgcr{llc;éfilrns3antropj,r{fmm_log1ts—'[rua}, RF_p;:'am [ Tmax_deptht: 5, 1m1n_ch11d_we-|gh1§ .1, f;r:r:::r:;e\ciz;r;ngques
optimizer':tf.keras.optimizers.Adam(0.001), ‘n_estimators’: 51 num_boost_round’: 100, 0] 4Kemel methods
‘activation':['relu’, "], ST "eval_metric’': "mlogloss’, ’ et memoss o

'layars': [128,10], } optimal t-ranspor‘[a-tion
'metrics':[tf.keras.metrics.SparseCategorical Accuracy()1} T > [ Al ganalbils
Learning applications

? [] 6 Unsupervised Machine
Ada Boost set‘“ngs Leamning Applications
1 ? [:] 7 Optimal transportations
ada_param = {'tree_no': 50, COdPy Settlngs applications
"base_model’ :"tree_model ", : - :
. . R : codpy_param = {'set_kernel': "gaussian’} [ 8 Partial Differential
i lear o HQ—THFE - 1, . £odpy-p 9 Equations Applications
algorithm': SaMME.R"}
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supervised learning methods : the MNIST database (Y. Le Cun 1998)

* |l-a pick-up a data set. MNIST (pattern recognition problem)
* 1I-b Pick-up performance indicators : accuracy scores, discrepancy errors
* ll-c Pick-up a list of tests : variable training set size (Nx)

1.0
0.9+
== AdaBoost
087 =)= Decision tree
0.7 - o= Gradient Boostin
@ == Pytorch
E 0.6 1 == RForest
05 4 o= SVM
== Tensorflow
0.4 - == XGboost
codpy lab extra
0.3 7 == codpy lab pred

T T
) 1000
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Figure 5.2: Benchmark scores
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What differentiate kernel methods from other machine learning technics ?

Error estimates

1f(2) = fl < di(z,y, 2) || £ 1,

o di(x,y,z) discrepancy error. Both python
functions

e ||f|/z, function norm.
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== Decision tree 0.9 -
. 0.30 4 =@= Gradient Boosting ~@- AdaBoost
E =@= Pytorch 0.8 7 == Decision tree
5 o =@ RForest 07 4 =@= Gradient Boosting
2 =& svm 4 =@- Pytarch
5 == Tensorflow S 0.6 == RForest
S 0.20 4 =@= XGhoost @ -
B codpy lab extra 0.5 + —@ Tersorflow
k=]
0.15 - =@~ codpy lab pred 04 4 =@~ XGboost
codpy lab extra
0.10 - & O 0.3 7 =)= codpy lab pred
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o 1000 2000 3000 4000 5000 6000 7000 8000 o 1000 2000 3000 4000 5000 6000 7000 8000
Nx MNx

M PG

Figure 5.3: Discrepancy errors Figure 5.2: Benchmark scores

Kernel-based scores for MNIST can be predicted by discrepancy errors.
Codpy score <~ 1 - d(x,y,z)
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What differentiate kernel methods from other machine learning ?

Error estimates part i

e di(x,y, z) discrepancy error.
1 f(2) = fall < dilx,y, ) flla,

e ||f|/z, function norm.

Each kernel-based learning machine is shipped with quantified, worst-
error analysis tools for supervised / unsupervised learning

Consequence 1 : kernel-based methods are CONVERGENT

Consequence 2 : kernel-based methods are
EXPLAINABLE, hence AUDITABLE

M PG .



Another benchmark: the venerable BOSTON Housing price (1970)
(market price prediction)

e ll-a pick-up a data set. BOSTON Housing prices
* lI-b Pick-up performance indicators : Round Mean Square error %
* ll-c Pick-up a list of tests : variable training set size (Nx)

Test set =all Boston database (506 entries)
the training set is part of the test set

‘ &1 Figure 1 ) ) — [} > |

-\’\'\H“\.\." |

Note:

score of the kernel method is
zero on the last point (perfect
score) :

kernel methods can
replicate exactly the
training set.

&l €| Q= <1345 y=00478

M PG .




Reconstruction from sub-sampled signals.

medical imagery, oceanography, petroleum, defense, astrophysics ...

Application example: reconstruction from sub-sampled signals for SPECT machine

4 Fguel

# €3] Q=

Figure 5.5: high resolution sinogram (middle), low resolution (right), reconstructed image (left)
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Figure 5.6: Reconstructing from sub-sampled datas. Left original. middle SART method. right

.
kernel extrapolation.
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Unsupervised learning methods (clustering / segmentation)

a methodology to benchmark them all

Prediction function y = P(z, N,))

o 2 € RY=XD training set.
e N, number of clusters.

o y € RYD clusters (segmentation / quantization)

Benchmark: k-means algorithm versus sharp discrepancy sequences
DataBase : Kaggle credit card fraud detection (284 00 entries / 500 frauds)
Performance indicators : scores, discrepancy errors, inertia
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Why ? Discrepancy sequences are

deterministics

K-means clusters are not (initial values).
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What differentiate kernel methods from other machine learning ?
Differential operators

RKHS is a theory of functional spaces Kernel-based learning machines come with

— Differential / integral operators

ﬂ 2 Brief overview of

learnin a
ﬂ 3 Kernel and
differentiation techniques 3 KEI‘[]E]S DPErﬂtﬂI'S 1.4
for mac hine learning - . .
R 21 Al o this chapter 31 Coefficients operator . . . . .. . L Lo e e 14
3.2 Partition of unmity . . . . . .. L L L 15
33 Vooperator . . . . . . . L e e e e e e e e e e 16
34 Vloperator . . ... L L 7
3.0 Laplace operator . . . . . . L L L L L e e e e e e e e e 18
: A —1
3.6 Inverse Laplace operator ":“k.z.p ............................. 19
e 3.7 The V%loperatar . . .. . ... ... 20
! ernel-base Ty—1 F
. A8 The (VT operator . . . . .. . L L 22
[ 4 Kernel methods for 3.9 Leray-orthogonal operator . . . . . . . 0 L. L0 L e 23
0 SEIEIEIEE T 3.10 Leray operator and Helmholtz-Hodge decomposition . . 0. . 00000000000 24
5 Supervised Machine
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Learning Applications
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Optimal Transportation : Monge-Kantorovitch and
kernel-based reordering algorithms

M PG

infv Dk(ma Z) "

v bi-stochastic, Dk (x, z) discrepancy errors

Before reordering
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Optimal Transportation :
Polar factorization algorithms

Polar Factorization: find h convex s.t. z = (Vh) o T(x) > { Tintoduction

? ﬂ 2 Brief overview of
methods of machine

Application : the sampling function z = Si(z, N,) earing

> D 3 Kernel and
differentiation technigues

InputS: k kernel N D for machine learning
. X ~ ernel methods for
Olltpllt. z € Rz , [ 4 Kemel methods f

optimal transportation
D 4.1 Discrete reordering

e v € RV*Piid of X. a distribution sharing close statistical properties with z Aigorms

[1 4.2 The conditional
expectation algorithm

e /N, number of samples. [ 43 The polar

factorization algorithm

? ﬂ 5 Supervised Machine
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Polar factorization algorithms applications:

reconstruction of time dependent functions from time series observations

Stress test and reverse stress test

1 - Observe a time serie X;.o (market observations)

2 - Observe a time serie P& L(X¢<o) (P&L observations)

3 -today =t =0. Set T' > 0 an Horizon

4 - Use Si(X¢, N,) to reproduce the distribution P&L(Xr) (stress test)

5 - Use Sip(P&L(X:), N,) to find scenari X (reverse stress test)
6 - Use error estimates to produce confidence level on risk measurements

exaglssolution (blue) wversus computed (yvellow) Option PMNL values

=

OPTION PNL

T T T T T T T T T
2800 2200 2000 Z1O00 200 300 400 2500 2500

M PG

Note (reverse
stress test)

discrepancy
errors are more
meaningful than

Mahalanobis

distance for
kernel methods
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Polar factorization algorithms applications:
Transition probability / conditional expectations

Transition probability operator f,, = Il(z, z, f(2), k)

Consider t — X; any martingale process.

Inputs: k kernel Output: transition probabilities operator

o v ¢ RVXPiid of X;,.
NxD ® filz ™ EXe (f(-)]| Xy, =x) € RV*Ps,
o 2R iid of X4, to > 1.
tay V2 1 . H(JC,Z) :p(2"|$m)?§fg}{y c RNXN'

o f(z) € R¥*Ps optional function values. stochastic matrix - probabilities of transition.

Straightforward applications
* Pricing / risk (eg XVA) with internally generated samples

e alternative to Bayesian classifiers

M PG .
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Benchmark of conditional expectations algorithms : the Bachelier problem

Consider t — X; € RY a Brownian process (random parameters).

Inputs: k kernel We want to deduce the green curve f(z|z) from the red data f(z)

training (red) vs test (green) variables and values

o € RVXPiid of X,_;.
e 2 C RNXD iid of thg. 0.8

o f(2) = (2"a— K)T option payoff, a random weights ©<1

Output: forward values of options |
o foz~E*=2(f(-)]Xy=1 = 2) computed. o0 | ,

0.25 .50 .75 1.00 1.25 1.50 1.75
Basket values

benchmarked against
f(z|x) := EXe=2(f(-)| X¢=1 = ) - closed formula.

M PG }
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Kernel methods - Tools for statistical Learning
the Bachelier problem : a toy example of audit

Benchmark score

—a— Pi sharp
— - [=]]

—a— Proj
—a— ANMNM

||fz|a:_f(z|x)||£2

Score and time Benchmark :
« ANN = Tensorflow 0.3 -

scores =
I fz1z o2 +1F (z[2) ] 2

SCOmes

* Proj = CodPy P(x,y,z,fx,k) 0.2

. : error
* Pisharp = CodPy Pi(x,z,fx,k)

(x,z sharp discrepancy sequences) 0.0 - . . , ,
102 1u3logz{mx} 104 105
method Sharp ANN Proj
size of
training set 64 100 000 100000 |  °°;
error % RMSE | 3.40% 4.10% | 2.80% [
NOT | NOT f
dlagnostlc convergent convergent |convergent| *° 3 — — o —

@M PG e "



Optimal Transportation :

Signed Polar factorization algorithms and the convex-hull algorithms (CHA)
explicit solutions to Hamilton-Jacobi equations

CHA algorithm:

e Decompose z = (Vh)oT(z), T ”positive”.

e Consider 2T = (VhT™)oT(z), ht convex hull of h.

{a) t=0c initial condi-

_ (b) t=3: smooth regime
tion

(c)t=6: shock formation

Figure 4.1: Entropy dissipative solutions to Burgers equation

M PG

(d) t=106: N-wave regime.
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What differentiate kernel methods from other machine learning ?
Differential operators / sharp discrepancy sequences

Transported meshfree methods

Share similarities with
smooth particle hydrodynamic

Fichier Historique Redimensiocnnement

A5 0
0

20

30
|
0g0
0

36
|

40

300 Mpc

Apps:
Video games
Astronomical simulations
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What are kernel methods for numerical simulations in Finance ?
High-dimensional Hamilton-Jacobi-Bellman roe solvers

Front Office / Risk management engines since 2012

dXt = 7rTr (t, Xt ) dt —|— 0} (t’ Xt ) th Any kind of stochastic process, any dimensions |

P(t, Xy, Vg(Xy),...)

Any kind of function (payoff / strategy
optimal control)

Any kind of forward / backward modeling (BSDE/FSDE).

PDE (Partial Differential Equation) solver engine
Fokker-Plank / Kolmogorov (Forward / Backward)

Huge portfolios / risks sources capabilities.

Bullet proof auditable due to worst-error bounds.

Any kind of risk measurements (from instant prices to forward greeks).

Real time versus accuracy easy tuning capabilities.

Apps:
Pricing / Risk / XVA
/ Investment
strategies /
arbitrage / etc etc

M PG
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Want to dig in ? Our bibliography

We propose novel methods for machine learning and numerical simulations, using a partial differential equations approach.

1) A class of mesh-free algorithms for mathematical finance, machine learning and fluid dynamics. This paper is the backbone of our approach.

2) "The Transport-based Mesh-free Method (TMM) and its applications in finance: a review", in Wilmott magazine, This paper is a general, high-level
description of our approach.

3) "Mesh-free error integration in arbitrary dimensions: A numerical study of discrepancy functions”, Computer Methods in Applied Mechanics and
Engineering. This paper focuses on error analysis for Reproducing Kernel Hilbert Space methods.

4) « A new method for solving Kolmogorov equations in mathematical finance”, Comptes Rendus Mathematique, Volume 355, Issue 6, June 2017, Pages
680-686. This paper explains the Partial Differential Equation strategy for mathematical finance and provides numerical examples.

5) "Reuvisiting the method of characteristics via a convex hull algorithm" Journal of Computational Physics, October

2015 https://doi.org/10.1016/}.jcp.2015.05.043 applies this method for conservation laws.

6) A high dimensional framework for financial instruments valuation, 2013 an early attempt to describe multidimensional PDE for mathematical finance.
7) Optimally transported schemes 2008. treat the one dimensional case.

theoretical

We provide a library, named CodPy, which stands for “Curse of dimensionality in Python”. It provides tools for machine learning, statistical learning,
numerical simulations, and is based on our understanding of RKHS methods.

1) Codpy Tutorial is a gentle introduction to this library, focusing on machine learning.

2) CodPy - Advanced Tutorial, is a technical description of this library.

3) Akernel based reordering algorithm describes a central reordering algorithm for our application.

4) A kernel based polar factorization and the sampling algorithm with CodPy. In preparation. describes an algorithm to compute polar factorization. This
algorithm is illustrated with a very handy tool, allowing to produce iid samples from any input distribution.

5) A kernel based algorithm to compute conditional expectations. In preparation. is a quite important algorithm for finance applications. We benchmark an
implementation of this algorithm, using our framework CodPYy, against a classical neural network one.

6) Hedqging Strategies for Net Interest Income and Economic Values of Equity describes a prototype using CodPy, aiming to build sophisticated strategies
for ALM purposes.

7) Kernel methods for stress test and reverse stress test is a support vector machine approach to these class problems, using CodPy.

8) Numerical results using codefi collects a number of academical tests for pricing purposes with our approach

M PG )
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https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3790066
https://arxiv.org/pdf/1911.00992.pdf
https://wilmott.com/
https://arxiv.org/pdf/1911.00795.pdf
https://www.sciencedirect.com/science/journal/00457825
http://www.mpg-partners.com/wp-content/uploads/2017/07/2017-LeFloch-Mercier-CRAS.pdf
https://arxiv.org/pdf/1409.0291.pdf
https://doi.org/10.1016/j.jcp.2015.05.043
https://www.researchgate.net/publication/272219201_A_High-Dimensional_Pricing_Framework_for_Fi_nancial_Instruments_Valuation
https://www.researchgate.net/publication/228689632_Optimally_Transported_schemes_Applications_to_Mathematical_Finance
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3766451
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3769804
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3770557
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3454813
https://drive.google.com/file/d/1_UFpWHrbaMMMclPhLRrix2LWWQHVmR-d/view
https://www.researchgate.net/publication/314312380_Numerical_results_using_CoDeFi

