Options Portfolio Selection

Paolo Guasoni ${ }^{1,2}$ Eberhard Mayerhofer ${ }^{3}$

Boston University ${ }^{1}$
Dublin City University ${ }^{2}$
University of Limerick ${ }^{3}$

IAQF-Thalesians Seminar
May $7^{\text {th }}$ 2019, Fordham Gabelli School of Business

Outline

- Problem:

Optimal Investment in Options. Multiple Assets, Dependence.

- Model: One-Period Model. Infinitely Many Securities.
- Results:

Optimal Portfolios and Performance.

The Problem

- Options:

Available on stocks, bonds, indices, futures, commodities. Usually available on dozens of strikes and a handful of maturities.

- S\&P 500 index options returns: approximately -3% a week.
- Potentially high returns from selling options. Certainly high risks.
- How to construct optimal portfolios?
- High dimensional problem.

Example: 10 assets $\times 20$ strikes $=200$ options. With a single maturity.

- Markowitz? Problematic.

Options with only a small strike difference are nearly collinear. Nearly singular covariance matrix.

One Asset

- With one asset and one maturity, problem tractable.
- X underlying asset price at maturity. $c_{X}(K)$ price of a call option on X with strike price K. $p_{X}(x)$ physical marginal density of X.
- Assume that continuum of strikes is available.
- Risk-neutral density $q_{X}(K)$ is (Breeden and Litzenberger, 1978)

$$
q_{x}(K):=c_{x}^{\prime \prime}(K)
$$

- Thus, the unique SDF is the random variable $m_{X}(x)=c_{X}^{\prime \prime}(x) / p_{x}(X)$.
- If the function m_{X} is regular enough, the payoff decomposes as a portfolio of call and put options (Carr and Madan, 2001)

$$
\begin{aligned}
m_{X}(K)=m_{X}\left(K_{0}\right) & +m_{X}^{\prime}\left(K_{0}\right)\left(K-K_{0}\right) \\
& +\int_{0}^{K_{0}} m_{X}^{\prime \prime}(\kappa)(\kappa-K)^{+} d \kappa+\int_{K_{0}}^{\infty} m_{X}^{\prime \prime}(\kappa)(K-\kappa)^{+} d \kappa
\end{aligned}
$$

- Payoffs with maximal Sharpe of the form $R=a+b m_{X}(X)$ with $b<0$.

Incompleteness with Multiple Assets

- Call and Put options available on all sorts of underlying assets.
- But each option depends only on one asset.
- Option prices identify risk-neutral marginals, but not the risk-neutral dependence structure.
- Infinitely many risk-neutral laws consistent with market marginals.
- Market incomplete.
- High dimensional problem, but not high enough to complete market...
- Which risk neutral law to use?
- It depends on the investor's objective.

Literature

- Significant (negative) risk premia in options: Coval and Shumway (2001), Bakshi and Kapadia (2003), Santa-Clara and Saretto (2009), Schneider and Trojani (2015).
- Optimal payoff as weighted sum of calls and puts on all strikes. Carr and Madan (2001), Carr, Jin, Madan (2001).
- Performance manipulation with options on one asset: Goetzmann, Ingersoll, Spiegel, Welch (2007), Guasoni, Huberman, Wang (2011).
- Dynamic portfolio choice with options on one asset and one or two strikes: Liu and Pan (2003), Eraker (2013), Faias and Stanta Clara (2011).
- "Greek efficient" portfolios with multiple assets: Malamud (2014).

The Model

- Simplifications: one maturity, continuum of strikes. Shortest maturity options are most liquid. Strikes very numerous. Over 200 for the S\&P 500 index, over 100 for large stocks.
- One period. Underlying asset prices at end of period X_{1}, \ldots, X_{n}. Random variables on a probability space $(\Omega, \mathcal{F}, P), \mathcal{F}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
- By Carr-Madan formula, any smooth function f of X_{i} corresponds to a weighted average of options.
- Define options portfolio as a n-tuple $\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)$ of L^{2} functions with finite price, defined as expecation under risk-neutral marginal.
- Optimal payoffs regular if densities regular.

Portfolio Objective

- Assume zero safe rate to simplify notation.
- Payoff $Z=f_{1}\left(X_{1}\right)+\cdots+f_{n}\left(X_{n}\right)$ and price π.
- Maximize the Sharpe ratio, i.e., find the returns that

$$
\max _{R} \frac{E[Z-\pi]}{\sigma(Z)}
$$

- Payoff identified up to scaling and price. Z optimal iff $a+b Z$ optimal, with $b>0$.
- Ubiquitous objective in performance evaluation.
- And tractable.

Duality

- Maximixing Sharpe ratio equivalent to minimizing variance of SDF.
- Convex $\mathcal{R} \subset L^{2}(\mathcal{F}, P)$ space of payoffs.
- Assume some SDF $\hat{M}>0$ characterizes prices, and denote all SDFs by

$$
\mathcal{M}=\left\{M \in L^{2}, \mathbb{E}[R M]=\mathbb{E}[R \hat{M}] \text { for all } R \in \mathcal{R}\right\} .
$$

- Implies that for any excess return:

$$
0=E[R M]=\operatorname{cov}(R, M)+\mathbb{E}[R] \mathbb{E}[M] \geq-\sigma(R) \sigma(M)+\mathbb{E}[R]
$$

- Whence Hansen-Jagannathan bound:

$$
\sup _{\substack{R \in \mathcal{R} \\ \sigma(R) \neq 0, \mathbb{E}[M R]=0}} \frac{\mathbb{E}[R]}{\sigma(R)} \leq \inf _{M \in \mathcal{M}} \sigma(M)
$$

- Moral: instead of looking for R, look for SDF M^{*} with minimal variance.
- If M^{*} is a payoff, $R=-M^{*}+E\left[\left(M^{*}\right)^{2}\right]$ spans all optimal returns.

Dual Problem

- To ease notation: two assets with payoffs X and Y. Solve

$$
\min _{M \in \mathcal{M}} E\left[M^{2}\right]
$$

subject to the restrictions

$$
E[M \mid X]=\frac{q_{X}(X)}{p_{X}(X)}, \quad E[M \mid Y]=\frac{q_{Y}(Y)}{p_{Y}(Y)} .
$$

- To guess solution, consider SDF of the form $M=m(X, Y)$. (Intuitively, other sources of randomness would only increase variance.)
- Two families of infinitely many constraints: Lagrange multipliers?
- Reformulate problem in terms of densities.

Densities

- Find $m(x, y)$ that minimizes (interval $(0, \infty)$ used for concreteness)

$$
\int_{0}^{\infty} \int_{0}^{\infty} m(x, y)^{2} p(x, y) d x d y
$$

subject to the constraints

$$
\int_{0}^{\infty} m(x, y) \frac{p(x, y)}{p_{X}(x)} d y=\frac{q_{X}(x)}{p_{X}(x)} \quad \int_{0}^{\infty} m(x, y) \frac{p(x, y)}{p_{Y}(y)} d x=\frac{q_{Y}(y)}{p_{Y}(y)}
$$

- Formally, rewrite as unconstrained problem:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} m(x, y)^{2} p(x, y) d x d y & -\int_{0}^{\infty} \Phi_{X}(x)\left(\int_{0}^{\infty} m(x, y) p(x, y) d y-q_{X}(x)\right) d x \\
& -\int_{0}^{\infty} \Phi_{Y}(y)\left(\int_{0}^{\infty} m(x, y) p(x, y) d x-q_{Y}(y)\right) d y,
\end{aligned}
$$

- Functions $\Phi_{X}(x)$ and $\Phi_{Y}(y)$ as infinite-dimensional Largrange multipliers.

Integral Equations

- Eliminating constant terms, equivalent to:

$$
\int_{0}^{\infty} \int_{0}^{\infty}\left(m(x, y)-\Phi_{X}(x)-\Phi_{Y}(y)\right) m(x, y) p(x, y) d x d y
$$

- Setting first-order variation to zero leads to candidate solution

$$
m^{*}(x, y)=\frac{1}{2}\left(\Phi_{X}(x)+\Phi_{Y}(y)\right)
$$

where $\Phi_{X}(x)$ and $\Phi_{Y}(y)$ are identified by the system of equations

$$
\begin{array}{ll}
\frac{1}{2} \Phi_{X}(x) p_{X}(x)+\frac{1}{2} \int_{0}^{\infty} \Phi_{Y}(y) p(x, y) d y=q_{X}(x) & x>0 \\
\frac{1}{2} \int_{0}^{\infty} \Phi_{X}(x) p(x, y) d x+\frac{1}{2} \Phi_{Y}(y) p_{Y}(y)=q_{Y}(y) & y>0 .
\end{array}
$$

- Does this have a solution?
- If $\left(\Phi_{X}, \Phi_{Y}\right)$ works, then $\Phi_{X}^{\prime}(x)=\Phi_{X}^{\prime}(x)+c, \Phi_{Y}^{\prime}(y)=\Phi_{Y}(y)-c$ also works.
- Eliminate degree of freedom by setting

$$
\int_{0}^{\infty} \Phi_{X}(x) p_{X}(x) d x=\int_{0}^{\infty} \Phi_{Y}(y) p_{Y}(y) d y
$$

Main Result (1/2)

Theorem

Assume that $\mathcal{M} \neq \emptyset$ and $\left\|\frac{p_{i} p_{i}^{c}}{p}\right\|_{p}^{2}<\infty, 1 \leq i \leq n$. Then:

- (Existence and Uniqueness) There exists a unique minimal SDF $M^{*} \in \mathcal{M}$.
- (Linearity) There exist $\Phi:=\left(\Phi_{1}, \ldots, \Phi_{n}\right)$, where each $\Phi_{i} \in L_{p}^{2}$ for $1 \leq i \leq n$, such that the SDF is of the form $M^{*}=m^{*}(X)$, where

$$
m^{*}(\xi)=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}\left(\xi_{i}\right)
$$

- (Identification) Φ is the unique solution to the system of integral equations

$$
p_{i}\left(\xi_{i}\right) \Phi_{i}\left(\xi_{i}\right)+\sum_{j \neq i} \int_{\mathcal{D}_{i}^{c}} \Phi_{j}\left(\xi_{j}\right) p(\xi) d \xi_{i}^{c}=n q_{i}\left(\xi_{i}\right)
$$

with the uniqueness constraints $\int_{l_{i}} \Phi_{i}\left(\xi_{i}\right) p_{i}\left(\xi_{i}\right) d \xi_{i}=1,1 \leq i \leq n$.

Main Result (2/2)

Theorem

- (Performance) Optimal excess returns are of the form a($\left.m^{*}-\mathbb{E}\left[\left(m^{*}\right)^{2}\right]\right)$ for a <0, and their common maximum Sharpe ratio is

$$
S R=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \int_{l_{i}} \Phi_{i}\left(\xi_{i}\right) q_{i}\left(\xi_{i}\right) d \xi_{i}-1} .
$$

- (Regularity) Let $\left(q_{i}\right)_{i=1}^{n} \subset C^{k}(\mathbb{R})$ with $k \geq 0$. Denoting the continuous partial derivatives by $\partial_{\xi_{i}}^{\beta} p(\xi), 0 \leq \beta \leq k$, if for any $R>0$ there exists $\alpha \in(1 / 2,1]$ such that

$$
\sup _{\xi:\left\|\xi_{i}\right\| \leq R}\left|\frac{\partial_{\xi_{i}}^{\beta} p(\xi)}{\left(p_{i}^{c}\left(\xi_{i}^{c}\right)\right)^{\alpha}}\right|<\infty \quad \int_{\mathcal{D}_{i}^{c}}\left(p_{i}^{c}\left(\xi_{i}^{c}\right)\right)^{2 \alpha-1} d \xi_{i}^{c}<\infty,
$$

then $m^{*}(\xi)=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}\left(\xi_{i}\right)$ is also in $C^{k}(\mathbb{R})$.

Sanity Checks

- Risk-Neutrality:

If options prices reflect zero risk premium $q_{X} / p_{X}=q_{Y} / p_{Y}=1$, then we should neither buy nor sell them.

- Indeed, in this case $\Phi_{X}=\Phi_{Y}=1$, whence $m^{*}=1$, which has zero variance.
- Independence:

If X and Y are independent under p, then the optimization problem should separate across assets.

- Indeed, $\Phi_{X}(x)=2 \frac{q_{X}(x)}{p_{X}(x)}-1, \Phi_{Y}(y)=2 \frac{q_{Y}(y)}{p_{Y}(y)}-1$. No interaction.
$m^{*}(x, y)=\frac{q_{X}(x)}{p_{X}(x)}+\frac{q_{Y}(y)}{p_{Y}(y)}-1$.
- Trivial example, nontrivial message.

If options on multiple underlyings are not traded, the risk-neutral density consistent with independence and the maximization of the Sharpe ratio is $q_{X, Y}(x, y)=q_{X}(x) p_{Y}(y)+q_{Y}(y) p_{X}(x)-p_{X}(x) p_{Y}(y)$. It does not correspond to any particular copula...

- Nontrivial explicit solutions with dependence?
- Tractability?

Mixture Distributions (1/2)

- Solving integral equations is nontrivial. To break the spell, discretize.
- $\left(p_{X}^{i}\right)_{1 \leq i \leq k},\left(p_{Y}^{i}\right)_{1 \leq i \leq k}$ strictly positive probability densities on $(0, \infty)$.

$$
p(x, y):=\frac{1}{k} \sum_{i=1}^{k} p_{X}^{i}(x) p_{Y}^{i}(y)
$$

(Remember the proof of Fubini-Tonelli theorem?)

- Plug into integral equations. They become

$$
\frac{p_{X}(x)}{2} \Phi_{X}(x)=q_{X}(x)-\sum_{i=1}^{k} c_{Y}^{i} p_{X}^{i}(x), \quad \frac{p_{Y}(y)}{2} \Phi_{Y}(y)=q_{Y}(y)-\sum_{i=1}^{k} c_{X}^{i} p_{Y}^{i}(y),
$$

where the $2 k$ constants $\left(c_{X}^{i}\right)_{1 \leq i \leq k},\left(c_{Y}^{i}\right)_{1 \leq i \leq k}$ are

$$
c_{X}^{i}=\frac{1}{2 k} \int_{0}^{\infty} \Phi_{X}(x) p_{X}^{i}(x) d x, \quad c_{Y}^{i}=\frac{1}{2 k} \int_{0}^{\infty} \Phi_{Y}(y) p_{Y}^{i}(y) d y
$$

- Plug formulas for Φ_{X} and Φ_{Y} again.

Mixture Distributions (2/2)

- Obtain system of $2 k$ equations in $2 k$ unknowns

$$
\begin{array}{lll}
c_{Y}^{i}=\frac{1}{k} \int_{0}^{\infty} q_{Y}(y) \frac{p_{Y}^{i}(y)}{p_{Y}(y)} d y-\frac{1}{k} \sum_{j=1}^{k} c_{X}^{i} \int_{0}^{\infty} \frac{p_{Y}(y)^{j} p_{Y}^{i}(y)}{p_{Y}(y)} d y & 1 \leq i \leq k \\
c_{X}^{i}=\frac{1}{k} \int_{0}^{\infty} q_{X}(x) \frac{p_{X}^{i}(x)}{p_{X}(x)} d x-\frac{1}{k} \sum_{j=1}^{n} c_{Y}^{j} \int_{0}^{\infty} \frac{p_{X}^{j}(x) p_{X}^{i}(x)}{p_{X}(x)} d x & 1 \leq i \leq k
\end{array}
$$

- But the rank is $2 k-1$.
- Drop one equation and replace it with the uniqueness constraint

$$
\sum_{i=1}^{k} c_{X}^{i}-\sum_{i=1}^{k} c_{Y}^{i}=0
$$

- Now system is invertible.
- Note: k in mixture representation independent of number of assets n. (Independence corresponds to a minimal $k=1$ regardless of n.)
- No curse of dimensionality.

Discrete Densities

- Another tractable discretization is with piecewise constant densities.
- Two increasing finite sequences $\left(x_{i}\right)_{0 \leq i \leq k}$ and $\left(y_{j}\right)_{0 \leq j \leq 1}$.
- Assume $P\left(X \in\left[x_{0}, x_{k}\right), Y \in\left[y_{0}, y_{l}\right)\right)=Q\left(X \in\left[x_{0}, x_{k}\right), Y \in\left[y_{0}, y_{l}\right)\right)=1$.
- Assume joint probability density p constant on each rectangle $l_{i}^{X} \times l_{j}^{y}$, where $l_{i}^{x}=\left[x_{i-1}, x_{i}\right), 1 \leq i \leq k$, and $l_{j}^{y}=\left[y_{j-1}, y_{j}\right), 1 \leq j \leq I$.
- Denote $\tilde{p}^{i j}=P\left(X \in l_{i}^{x}, Y \in l_{j}^{y}\right), \tilde{p}_{X}^{i}=P\left(X \in l_{i}^{x}\right), \tilde{p}_{Y}^{j}=P\left(Y \in l_{j}^{y}\right)$, and $\tilde{q}_{X}^{j}=Q\left(X \in l_{i}^{x}\right), \tilde{q}_{Y}^{j}=Q\left(Y \in l_{j}^{y}\right), 1 \leq i \leq k, 1 \leq j \leq I$.
- Any solution Φ_{X}, Φ_{Y} piecewise constant on $\left(l_{i}^{X}\right)_{1 \leq i \leq n}$ and $\left(l_{j}^{Y}\right)_{1 \leq j \leq m}$. Set $\Phi_{X}^{i}=\Phi_{X}\left(x_{i}\right)$ and $\Phi_{Y}^{i}=\Phi_{Y}\left(x_{j}\right)$.
- Integral equations reduce to:

$$
\Phi_{X}^{i} \tilde{p}_{X}^{i}+\sum_{j=1}^{k} \Phi_{Y}^{j} \tilde{p}^{i j}=2 \tilde{q}_{X}^{i}, 1 \leq i \leq k, \Phi_{Y}^{j} \tilde{p}_{Y}^{j}+\sum_{i=1}^{l} \Phi_{X}^{i} \tilde{p}^{i j}=2 \tilde{q}_{Y}^{j}, 1 \leq j \leq 1 .
$$

- Uniqueness constraint $\sum_{i=1}^{n} \Phi_{X}^{i} \tilde{p}_{X}^{i}-\sum_{j=1}^{m} \Phi_{Y}^{j} \tilde{p}_{Y}^{j}=0$.
- Curse of dimensionality.

Example: Variance Gamma Model

- Common wisdom on option portfolios: Writing options profitable but risky. Diversify over many assets.
- Which strikes to write more? Impact of correlation?
- Example: Variance-Gamma model.

Combines no-arbitrage with different realized and implied volatilities. Important to separate options' risk-premia from assets' risk premia.

- Two risky asset prices, both distributed as

$$
X_{t}=X_{0} e^{\omega t+Z_{t}(\sigma, \nu, \theta)}
$$

where Z_{t} has the characteristic function

$$
\mathbb{E}\left[e^{i u u_{t}}\right]=\left(1-i \theta \nu u+\frac{\sigma^{2}}{2} u^{2} \nu\right)^{-t / \nu}, \quad u \in \mathbb{R}
$$

- Marginal of a Levy process with jump measure $k_{Z}(x)=\frac{e^{\theta \times / \sigma^{2}}}{\nu|x|} e^{-\frac{\sqrt{\frac{2}{\nu}+\frac{\theta^{2}}{\sigma^{2}}}}{\sigma}|x|}$.
- Dependence modeled through bivariate t-copula.
- Assets' risk premia both zero.

$$
\sigma_{X}^{P}=20 \%, \sigma_{X}^{Q}=\sigma_{Y}^{Q}=\sigma_{Y}^{P}=25 \%
$$

$$
\sigma_{X}^{P}=20 \%, \sigma_{X}^{Q}=25 \%, \sigma_{Y}^{P}=25 \%, \sigma_{Y}^{Q}=40 \%
$$

Performance

	Figure 1		Figure 2	
Correlation	(annual)	(monthly)	(annual)	(monthly)
0%	0.29	0.68	0.62	1.71
60%	0.31	0.74	0.58	1.63
75%	0.33	0.84	0.58	1.67
90%	0.43	1.17	0.63	1.99

- Annualized Sharpe ratios of optimal portfolios.
- Trade annually (left) or monthly (right).
- Higher correlation? Higher Sharpe ratio. Against intuition on diversification.
- Reason: correlation is among assets, not all options.
- Keeping the same marginals while increasing correlation increases the diversification and hedging opportunities among individual options.

Do We Need It?

- Optimal asset-specific payoff depends on risk-neutral densities of all assets. But, is interdependence a first or a second-order effect?
- Naïve Optimization: two-stage procedure.
(1) Find optimal payoff $\Psi_{i}\left(X_{i}\right)$ on each asset X_{i}.
(As if options on other assets did not exist.)
(2) Construct portfolio $\sum_{i=1}^{n} w_{i} \Psi_{i}\left(X_{i}\right)$ with weights w_{i} that maximize Sharpe ratio.
- How big is the difference from main result?
- It depends on correlation. When it is high, the difference is rather big.
- Case in point: suppose options on Y have zero risk-premia.
- Then the optimal payoff of options in Y is identically zero.
- Two-stage optimization trivial: yields the optimal payoff on X.
- All hedging gains are lost.

Sharpe Ratios vs. Correlation

Black: Optimal. Blue: Naïve. Green: Indep. Top: Monthly. Bottom: Annual.

Arbitrage

- Warning: the minimal SDF may or may not be positive. Arbitrage?
- No if correlation and frequency are low. Careful with pricing!

Conclusion

- Options portfolio selection.
- Each option on one underlying asset. Market incomplete with multiple assets.
- Maximize Sharpe ratio: system of linear integral equations.
- Integral equations intractable virtually all nontrivial cases. Discretizations tractable in virtually all cases.
- Optimal payoffs in one asset depend on options prices in all other assets. Except with independence.
- It may be optimal to buy options in one asset, expecting to lose. Just to hedge more profitable options in another asset.

Thank You!

Questions?

http://ssrn.com/abstract=3075945

