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Overview, Introduction and Some Early 
History

Some Financial Applications of Machine Learning



Schematic diagram or a section through the peripheral retina. The layers 
or the retina are indicated on the right.

A Neural Network Schematic diagram of a section 
through the peripheral retina
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A Neural Network
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Neural Networks and Artificial Neural Networks
An artificial neural network (ANN) is a mathematical  computing 
system inspired by studies of the brain.

,
,
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Artificial Neuron
An artificial neural network is based on a collection of connected units or nodes 
called artificial neurons, which loosely model the neurons in a biological brain.
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● The analogy between biological neurons and artificial neurons is 
straightforward
− The inputs to the artificial neurons correspond to axons of incoming neurons
− The weights on the inputs to the artificial neuron correspond to the strength of the 

connection between the axons of the incoming neuron to the dendrites of target 
neuron

− The summation and transfer functions of the artificial neural network correspond 
to the cell body of the neuron. It has two parts:
§ The first part takes the input (analogous to the dendrite) and performs a summation
§ Based on the aggregated value, the second part, the transfer makes a decision

− The output of the artificial neuron is analogous to the axon of the neuron
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Evolution of the Artificial Neuron
The artificial neuron has undergone several iterations to result in the neurons that 
are used in neural networks today.

● The McCulloch-Pitts 
neuron takes as input 
Boolean values of xi, 
either 0 or 1, and has a 
Boolean output y (0:1)

● There is no learning 
involved in McCulloch-
Pitts neuron model

● The McCulloch-Pitts 
neuron can not input real 
values (only 0 and 1)

Perceptron (1957)McCulloch-Pitts Neuron
(1943)

Modern Neuron (1986)

● Rosenblatt’s perceptron 
can take continuous 
values as inputs, but has 
Boolean output

● The weights can be 
adjusted over time (the 
perceptron can “learn”) 

● Single layer perceptrons 
are only capable of 
learning linearly separable 
patterns (can not solve 
XOR problem)

● This neuron can have a 
non-linear activation 
function and a bias

● The differentiability of the 
activation function enables 
application of the gradient 
descent error back 
propagation

● Still, the single layer 
perceptron can not solve 
the XOR problem
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Perceptrons and the XOR Problem
Minsky and Papert demonstrated that a one-layer perceptron could not solve the 
XOR (exclusive OR) problem. This set the field back for over a decade.
● The perceptron is an algorithm for supervised learning of binary 

classifiers
− A binary classifier is a function which can decide whether or not an input, 

represented by a vector of numbers, belongs to some specific class
− A single layer perceptron at the 

output node is a linear 
combination of its inputs

− This means it can classify input-
output space only if you can 
draw one linear line which will 
clearly separate them

− Since the XOR function is not 
linearly separable, it is 
impossible for a single 
hyperplane to separate it

● The solution to the problem is 
the multi-layer perceptron
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The Multi-Layer Perceptron
A multilayer perceptron (MLP) is a class of feedforward artificial neural networks consists of, at 
least, three layers of nodes: an input layer, a hidden layer and an output layer.
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● The solution to the XOR 
problem is to add an 
additional layer of units 
without any direct access to 
the outside world, known as a 
hidden layer
− This architecture, while more 

complex than the classic 
perceptron network, is capable 
of achieving non-linear 
separation 

Multi-Layer Perceptron

● The most noticeable difference from Rosenblatt’s model to the multi-
layer perceptron is the differentiability of the activation function
− Except for the input nodes, each node is a neuron that uses a nonlinear 

activation function
− Recall the the Rosenblatt perceptron had a binary output activation function

● David Rumelhart and Geoffrey Hinton (1986) changed the history of 
neural networks research by introducing the error backpropagation 
algorithm
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Neuron Activation Function

● The basic operation of an artificial 
neuron involves summing its 
weighted input signal and applying 
an activation function
‒ In biologically inspired neural 

networks, the activation function is 
usually an abstraction representing 
the rate of action potential firing in 
the cell

‒ In its simplest form, this function is 
binary—that is, either the neuron is 
firing or not. This was true for the 
perceptron. 

In artificial neural networks, the activation function of a node defines the output 
of that node, or "neuron," given an input or set of inputs.
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Activation Function

● Typically the same activation function is used for all neurons in a 
particular layer of the network, although this is not required

● In most cases, a non-linear activation function is used
‒ Historically, the most common function used in multilayer perceptrons is a 

sigmoidal activation function, but this has been replace by the ReLU function
‒ Two forms of the sigmoid function are commonly used: !(vi) = tanh(vi) whose 

range is normalized from -1 to 1, and !(vi) = (1+ exp(-vi))-1 is vertically 
translated to normalize from 0 to 1



The Sigmoid and Hyperbolic Tangent Functions

● The sigmoid function curve looks like an S-
shape (see figure). Its activation function is:

The most common activation functions in artificial neural networks are the 
sigmoid and hyperbolic tangent activation functions.
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‒ It is especially useful for models where we have 
to predict the probability as an output 

● The main reason the sigmoid function is used 
because it exists between 0 to 1

Sigmoid Function

Hyperbolic Tangent Function
● The hyperbolic tangent (tanh) function has become popular as it is less 

likely to get “stuck” during training

● Its activation function is:

‒ Since the probability of anything exists only between the range of 0 and 1, the 
sigmoid is the right choice 

● The tanh function produced output in the range between -1 and 1
‒ The tanh has stronger gradients (derivatives) around zero than the 

sigmoid which is preferable for optimization 11
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The Rectified Linear Unit (ReLU) Function
In recent years, the rectified linear unit (ReLU) function has become popular, 
particularly for deep learning networks.
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● Demonstrated to enable better training of 
deeper networks, compared to the widely-used 
sigmoid and tanh functions

● As of 2018, ReLU is the most popular activation 
function for deep neural networks

● The rectified linear unit (ReLU) is an activation 
function defined as the positive part of its 
argument:

● This activation function was introduced to a 
dynamical network by Hahnloser et al. in 2000

ReLU Function
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Error Backpropagation - Overview

Gradient Descent Method

Backpropagation is used to describe gradient descent optimization algorithm 
which adjusts weights of neurons by calculating the gradient of the loss function.
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● Backpropagation is 
shorthand for "the 
backward propagation of 
errors," since an error is 
computed at the output and 
distributed backwards 
throughout the network’s 
layers  

● Backpropagation requires 
the derivative of the loss 
function with respect to the 
network output to be known

● Then increase or decrease the value of each weight to produce the maximal 
decrease in network error for that input 

Typical error 
surface for two 
weights

● The derivative of this with respect to the network weights is
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Error Backpropagation
Backpropagation in multi-layered feedforward networks, is made possible by using 
the chain rule to iteratively compute gradients for each layer
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Error Backpropagation

The Learning Rate
● The problem for most models is how to set the learning rate
● The update expression for each weight is:

− j ranges from 0 to 
the number of 
weights

− θj is the jth weight in 
a weight vector, and

− ⍺ is the learning rate

● We’re computing 
dJ/dθj (the gradient 
of weight θj ) and 
then taking a step of 
size alpha in that 
direction
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Putting it All Together: The Neural Network
A popular form of neural network is the feed-forward network (below) 
which is typically trained using backpropagation.

Feed Forward Neural Network
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Activation Function
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Early Applications

Machine Learning and Neural Networks in Finance



Types of Neural Networks
There are many types of neural networks. See examples of popular ones below.

Recurrent Network

Hopfield Associative NetworkConvolutional Neural Network

Deep Learning Network Deep Auto Encoders

Back-Propagation 
Network

Long- Short-Term
Memory
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What Can Neural Networks Do? The Linear Model

A fundamental problem in visual psychophysics is to construct a 

geometry in which equal distances represent equal changes in sensation.

Trichromatic Theory of 

Human Color Vision

MS L

S

McAdam’s 
Ellipses
(1942)

● An early theory of color vision was based on the 

idea of three types of photoreceptor whose 

outputs combined linearly

− If that were the case, it should be possible to 

construct a color diagram in which just discriminable 

color differences would plot as circles of equal size

● MacAdam (1942) measured the loci of just-

noticeable differences in color for various 

starting colors

− However, as shown in the diagram below, that was 

not possible as those just noticeable differences 

were not only elliptical, but differed in size as well

● An important problem in color science was to 

create a geometry in which those ellipses plot as 

circles of equal size

− This only became possible using a neural network 

as described below
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What Can Neural Networks Do?
An initial attempt to construct a more uniform color space was to put 
nonlinear intensity-response functions on the photoreceptors.

Non-Linear Model of Color Vision

where R is the response, k is a constant 
(usually ½ max) and n is proportional to the 
slope of the curve

+

MS L

S
+ +

1976 CIE Uniform Chromaticity 
Diagram

● In 1976, an attempt was made to construct a 
more uniform color diagram by putting 
saturating intensity-response functions on 
the photoreceptors
− In fact, physiologists suggested that 

photoreceptors had saturating responses of 
stimulus intensity I of the form:

! " = !$%&
"'

"' + )

● Although the ellipses are more uniform that 
in the earlier diagram, they are far from 
circular and far from uniform in diameter
− This is in spite of the fact that the diagram was 

called the “Uniform Chromaticity Diagram”
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What Can Neural Networks Do?
A neural network imposed on the nonlinear photoreceptor responses fit 
by backpropagation resulted in a uniform color space.

,

Detector

Zone Theory of Color Vision

ATDN Uniform Color Space

● Many lines of evidence suggested that 
photoreceptor outputs do not just sum at 
the post-receptor level, but also cancel
− In fact, the zone theory of color vision was 

constructed based on evidence from other 
studies of color vision

● We decided to see if our version of a back-
propagation method applied to the neural 
network zone theory could solve the 
uniform color diagram.
− There were no backpropagation algorithms 

available at the time, so we devised our own
− We adjusted the weights in a direction that 

would make the ellipses more circular and 
uniform in size (akin to gradient descent)

− Those resulting loci of just-noticeable 
differences are close to circles of similar size
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Neural Network for Credit Card Fraud Detection 
The problem of fraudulent use of lost/stolen credit cards is a long-standing 
problem for credit card issuers.

● Credit card fraud occurs when someone uses another’s credit card to 
make unauthorized transactions
− It could be that the credit card had been lost or stolen and the holder begins 

charging on the account

The Credit Card Fraud Problem

● Typically, in cases of credit card fraud, the perpetrator attempts to 
make as many charges as possible in a short period of time
− Thus, one must act quickly in order to stem large losses

● In general, the credit card holder is not liable for fraudulent use of the 
card, so the risk of fraud falls on the issuing bank
− Thus, banks have set up “fraud early warning” units to call customers to 

verify if they have their cards and, if not, will close the account
− More recently, banks have become even more proactive, closing the card 

accounts even before calling the customer 

21
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Neural Network for Credit Card Fraud Detection 
The job was to use a neural network to improve upon a model that sent 
questionably fraudulent transaction to the early warning queue.

● Because of my background with neural network, Citibank asked me to 
build a neural network to discriminate charges that result from 
fraudulent activity from legitimate charges 
− The problem was that a traditional statistician had tried to implement a 

neural network and it didn’t work

● MODELING OBJECTIVE: Build a neural network to discriminate 
fraudulent transactional activity from legitimate charges using 
information from transactional records and account histories
− In particular, the objective was to build a model that would outperform the 

existing regression model

● Fortunately, when I arrived, Citibank already had a dataset of 
transactions resulting from fraudulent activities and non-fraud 
transactions
− The dataset was prepared by my predecessor who failed to find improvement 

of a neural network model over a logistic regression
− The input variable set (see next slide) was chosen to include items and 

charge features that were generally associated with fraudulent activity

22Benzschawel Scientific, LLC



Neural Network for Credit Card Fraud Detection 
Given a small sample (by today’s standards), we found an optimal net to consist of 
our given 25 input variables, 7 nodes in the single hidden layer and an output.

Training Sample
Brand         N(Fraud)           N(Valid)

Classic           2,663             2,524
Preferred   1,054             1,055
AAdvantage     369                369
Total               4,086             3,948

0 BIAS
1 AMTOTB1
2 AMTOTB5
3 AMT1LN
4 UTIL
5 OTB
6 INACT2
7 INACT3
8 INACT9
9 CH5AD1
10 DELQ1
11 HG2DY1
12 LOGAM1
13 AMTCL1
14 HG2DY1
15 MOB1
16 HGHAM1
17 NCLMT
18 GGAMS1
19 HSCDY1
20 LOGMN1
21 HGISC1
22 HILMT
23 Classic
24 Preferred
25 Advantage

Variables● A list of 25 variables thought to be useful in classifying 
fraud/non-fraud charges were selected along with a bias
− The variables are coded for security purposes, but some of 

these include:
§ Number of charges in a given day
§ Amount of open-to-buy on the credit card
§ Number of purchases in “high risk” fraud categories
§ Has there been other recent activity on the card, and so forth
§ The type of credit card: Classic, Preferred, AAdvantage

The Sample

Holdout Sample
Brand         N(Fraud)           N(Valid)

Classic           2,664             2,503
Preferred   1,054             1,055
AAdvantage     182                185

Total               4,086             3,948

● The characteristics of the sample 
for training and test (holdout) 
appear at the right
− Both training and test samples had 

about 4,000 fraud and non-fraud 
cases (i.e., a 50/50 split both ways)

− More recent practice is about 66/33 
split between training and test, but 
still a 50/50 (fraud/non-fraud) 
category split

Sample Statistics
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Building Neural Networks
Although neural networks can take many forms, there are certain general activities 
that are commonly required to construct most networks.

Procedure for Constructing Back-Propagation Neural Networks
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1. Assemble Data Set (Most Difficult Part)
2. Define Variables and Scale Them for Input to Network
3. Extract Training, Cross-Validation, and Test Samples
4. Choose Initial Network Parameters: Type, Nodes, Levels, Activation 

Functions
5. Train Network with Intermittent Testing on Cross-Validation Sample 

until No Further Improvement
6. Test Network using Test Sample (Note Accuracy of Prediction)
7. Depending on Test Results, Change Network (by Adding a Node) 

and Repeat Steps
8. When Finished, Run Software to Determine Importance (i.e., 

interpret) of Network Input Variables
9. Begin Programming Real-Time Implementation
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Determining the Network Structure
There is no reliable algorithm for determining the number of hidden nodes in a 
network, so the process is one of trial-and-error.

Number of Hidden Nodes 

P
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)

1           2          3          6         12  

0.95

0.90

0.85

0.80

Number of Hidden Nodes versus 
Probability Correct Classification

● Start with one neuron in the hidden layer 
− Train the model to asymptote (described further in the next slide)
− Model accuracy is measured a maximum probability of correct classification on a 

holdout sample (equal fraudulent and non-fraud)

● Now add another node and repeat procedure until performance asymptotes
− When performance no longer improves, back off one neuron

● We found that seven nodes was optimal for the fraud model

● Choose a number of hidden neurons 
between 1 and the number of input 
variables

● The number of hidden nodes should be 
somewhere between the size of the input 
and output layer, potentially the mean

● The number of hidden nodes shouldn't 
exceed twice the number of input nodes, 
as you are probably grossly overfitting

Some Rules of Thumb:

My Procedure:
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Training the Model to Asymptote
In addition to setting the number of nodes, each attempt at a model for a given 
number of nodes will need a learning rate and number of training epochs.

Classification Error Reduction 
versus Number of Epochs for 7 

Hidden Node Network

Er
ro

r R
ed

uc
tio

n 
(%

)

● For each of the models with different 
numbers of hidden nodes, it was 
necessary to specify the learning rate 
and train for the number of epochs
− As for number of hidden layers and nodes, 

there is no analytical method for specifying 
the learning rate in backpropagation
§ A traditional default value for the learning rate 

is 0.1 or 0.01, but this is only a starting point
§ One should try a range of values and settle on 

the best one
§ Configuring the learning rate is challenging 

and time consuming, but also critical

● Determining the number of epochs for training is an empirical process
− The figure shows how the errors are reduced as number of epochs increase 

for the seven hidden-node network
− Performance on the test sample stabilized after about 30-50 epochs

● Note that while it is often preferable to do these tests on the holdout 
sample, there is the risk of overfitting
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NNet Architecture for Credit Card Fraud Detection
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Neural Network Model for Credit Card Transaction Fraud
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Evaluating Classification Models: CAP Curves
The receiver operating characteristic (ROC) and Cumulative Accuracy Profiles (CAP) are 
used  to evaluate models’ abilities to classify events into different categories.

The analysis plots “hits” 
(defaults called “defaults”) 
versus either the population 
percentile cut-offs for CAP 
curves or “false alarms” (calling 
non-defaulters “defaults”) for 
ROCs

Distributions of Defaults 
and Non-Defaults

To Plot a CAP Curve:
1. Rank all firms by scores from

both models (EDF and credit 
rating)

2. For each decile in each ranked 
population (by EDF or credit 
rating) calculate the percentage 
of the total number of defaulted 
firms in or above that decile.

3. Plot that value for each model

Order Observations 
by MODEL Score
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Evaluating Fraud Network Performance
One method for evaluating classification models are cumulative accuracy profiles 
which plot correct classifications as a function of ranked population scores.

Computing Cumulative Accuracy Profiles

● To generate a cumulative accuracy 
profile for a given model:

1. Generate a ranked list of the scores 
from the model (i.e., likelihood of 
fraud) for all transactions and note 
whether or not each transaction was 
fraudulent or not

2. Then, starting with the highest ranked 
scores, go down the population and 
calculate for each percentile the 
cumulate percentage of fraudulent 
transactions at or above that 
percentile

3. Plot the results in a graph like that on 
the right

● The graph shows “hit” rates (percent of fraudulent transactions falling above 
a given ranked population percentile) for the neural network and regression 
models
− The neural network model consistently outperforms the regression one

NNet Fraud
Regression  Fraud
Non-Fraud

CAP Curves for Fraud Detection Models
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Neural Network for Credit Card Attrition
We built a neural network to predict which credit card customers would cancel 
their accounts when assessed their annual fee. This was used for marketing.

● OVERALL GOAL: Develop quantitative tools for use in anti-attrition   
marketing strategies (companion certificate for American Airlines)
− These tools will identify potential customer cancellations and suggest 

optimal marketing strategies on an individual account basis
● A time-series database of account activity from the period 3/88 to 4/90 

was extracted and used to build neural network models to predict fee-
based attrition

● As a first step, we built a model for identifying fee-based attrition using 
variables currently computed for an attrition model sold by Fair Isaac 
Company (FICO)
− This enabled us to evaluate the gain provided by network modeling tools
− It also made it easier to implement the neural network model and to 

integrate its results into the targeting system used by marketing
● We demonstrated that a network, model provides significant 

improvement over the FICO model
− We implemented that model for targeting potential attritions, and we

evaluated its effectiveness as well as that of anti-attrition strategies in the 
following months

30
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Neural Network for Credit Card Attrition
The “optimal” neural network was found to have six nodes in a single hidden layer 

Variable Names, 
Minimum and 

Maximum Values

● A total of 16 variables are input to the network along with a constant 
BIAS of 1.0

● Each variable is scaled in term of its minimum and maximum

Model for Credit Card Attrition
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Neural Network Model for Credit Card Transaction Fraud
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Interpreting Neural Network Decisions
Neural Networks have often been criticized as being “black boxes”, but 
in fact, there are several methods for reliably determining neural network 
decisions.

1. List of Variables
2. Univariate Relationships
3. Variable Exclusion Method
4. Garson’s Method
5. Analysis of Derivatives

List of Variables

Va
ria

bl
e 

N
am

es

● The simplest and most straightforward, but least 
informative method for imputing network decision 
making is to consider the list of input variables

● A list of variables is useful in that one can at least see 
the full spectrum of information available to the 
network

● Of course, the usefulness of this method is limited as 
there is no measure of the relative importance of each 
input variable in the network
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Interpreting Neural Network Decisions (cont.)
Univariate Relationships

● A more informative analysis of individual variables can be 
gained by performing regression tests between each input 
variable and the dependent variable in question
− For example, assume that we have 20 input variables thought to be 

related to the item that we wish to predict
− Then, for each candidate input variable, we build a logistic 

regression model by selecting values of ai and βi for each variable 
that is most highly correlated with the target variable

● We can then rank the variables with respect to their relative 
univariate predictive power
− Presumably, the variable with the greatest univariate predictive 

power is the most important, and so forth

● One limitation of this method is that relationships among input 
variables are not captured and multicolinearity is not assessed
− Still, the method reveals just as much as revealed by simple 

regression models
33
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Interpreting Neural Network Decisions (cont.)
Variable Exclusion
● A direct way to determine a variable’s importance is to first 

build a predictive model with a given set of variables and, 
once constructed, remove each variable in turn and retrain 
the model without that given variable
− The variable exclusion models need not be of the same structure 

as the original model; they should be the best models one can 
build with and without that variable

● It is hard to see how the variable exclusion method does not 
capture the importance of each individual variable
− However, this method does not capture the importance of bi-

variate or multi-variate interactions in multi-layer models
− Like the univariate relationship method, the variable exclusion 

method reveals at least as much about variable contributions as is 
revealed by simple regression models

− Furthermore, variable exclusion provides information about multi-
collinearity

34
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Interpreting Neural Network Decisions (cont.)
Garson’s Method

● A quick and effective way to determine univariate contributions to 
multi-layered networks and decision trees was proposed by Garson 
(1991)

● Essentially, Garson’s method is to compute for each normalized (e.g., 
0 to 1 scaled, Gaussian distributed, etc.) input variable the sum of the 
absolute values of its weights throughout the network or tree

● That is, Garson’s score for a given input variable, i, is calculated as

n = number of input variables
k = number of hidden nodes

w(i,j) = weight of the ith variable into the jth hidden node
o(j) = weight of the jth hidden node into the output node

where

! " = $%&
∑()*+ , ", ( ∗ /(()

∑")*2 ∑()*+ , ", ( ∗ /(()
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Interpreting Neural Network Decisions (cont.)
Analysis of Derivatives

Benzschawel Scientific, LLC

● Currently, the best way I know of to reveal the decision-
making properties of a complex system is to perturb slightly 
its inputs both individually and in combinations with all other 
inputs to the desired degree of complexity

● Assuming that one has trained a version of the network or 
decision tree to a given level of accuracy, one version of the 
par procedure is as follows:
1. Present a single training input vector to model and measure the 

output of network
− The resulting value is the benchmark for that vector

2. For each of the n variables in that input vector
− Adjust the value of that variable up by a given amount (say 5% for 

convenience) and measure the change in output; do the same for a 
small perturbation downward

− Compute the slope of best fit line through the three outputs (up, down 
and benchmark) as a function of value of the input variable to 
approximate change in output with respect to input (i.e., the compute 
the derivative)
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Interpreting Neural Network Decisions (cont.)
Analysis of Derivatives

3. Repeat steps 1-3 for all cases in the sample used for training the 
model and calculate the summary statistics of the resulting 
changes for each individual variable
− Be careful: it may be that a single variable have only positive or 

negative effects relative to the benchmark. This is why examination of 
the distribution is critical

● Proceed to analysis of bi-variate and multi-variate 
contributions
4. Beginning again with a single n-valued input vector from the 

training set, select two variables for joint perturbation.
− As in Step 1, present a input vector to the model, and let the resulting 

output value be the benchmark for that vector
− Then perturb by 5% each of the two variables simultaneously, up 

together, both down, and each pair in opposite directions, up-down, 
down-up, respectively

− As before present the entire vector to the model, with the resulting 
value be designated as the benchmark for that vector

37
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Interpreting Neural Network Decisions (cont.)
Partial Derivative Analysis

− Compute the slope of best fit line through the three outputs (up, down 
and benchmark) as a function of value of the input variable to 
approximate change in output with respect to input (i.e., the compute 
the derivative)

5. Repeat Step 4 for all cases in the sample used for training the 
model and calculate the summary statistics of the resulting 
changes for each set of variables
− Be careful: it may be that a single variable have only positive or 

negative effects relative to the benchmark. This is why examination of 
the distribution is critical

6. Repeat Steps 4 and 5, but this time perturbing three variables at a 
time and calculating its nine associated derivatives, for each trio 
and compute their averages and standard deviations (for each of 
the nine cases for each trio.

38
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We trained a neural network to select the mutual fund that had the best chance of 
being profitable over the next month.  We then analyzed the variable contributions.

Neural Network for Ranking Mutual Funds   3/3/92

Analysis of Variable Contributions● We built a model to predict one 
month returns on mutual funds
− The model had 18 inputs, 4 

hidden nodes and 1 output
− 500K learning trials (~100 

Epochs)
− Binary dependent variable (0:1) 
− N(Train) = 2,175; N(Test) = 2,253

● Variable importance was 
assessed using partial 
derivative analysis and 
Garson’s method
− There is reasonable 

consistency between the two 
methods

− This is particularly true at the extremes where largest positive and 
negative contributing variables are the same 
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Neural Network for US Treasury Yield Changes
We developed a model to predict  short-term movements in US Treasury yields 

and evaluated the model’s performance in simulated and actual trading.

● Our  objective was to predict the near-term directional change of  the  

U.S. Treasury bonds

− The model was trained to predict changes in 30-year US Treasury bond yields

− We chose as inputs to the model a set of 26 variables consisting  of raw 

market bond price series, equity indices, foreign exchange rates  and  

technical stochastic  indicators

− In  addition, the ratios of short-term changes in variables and other statistics 

were computed on some of these quantities

− We were able to get data on all these quantities since 2Q84,  so the first market 

moves that we predicted were for 2Q92, trained on the data between 1984 and 

1992

We were granted a patent on the model in 2009: T. Benzschawel, C. Dzeng, and G. Berman, 

Method and System for Artificial Neural Networks to Predict Price Movements in Financial 

Markets, US Patent: 7529703, May 5, 2009

● The neural network model is really a series of quarterly models with a 

new set of network weights developed for each subsequent quarter  

over the 11-year sample period (walk-forward method)

− Each successive period incorporated an additional three months of data  

− Thus, although we began predictions for 1992 with eight years of trailing data  

for training, by 2000, we had doubled the training set by including all the  

data from 1992 to 2000



Benzschawel Scientific, LLC

The US Treasury Bond Model 
One feature of development of the US Treasury Bond Model was that we only trained 
the on largest 1/3 up and 1/3 down moves in US Treasury yields.
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● The network consists of:
− Input layer (represents the  

daily market  values used 
for prediction)

− Hidden layer (sums 
weighted signals from  
each of the inputs prior to a 
nonlinear transformation)

− Output layer (sums the 
weighted outputs of the 
hidden layer and produces 
the response). Asset 
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Neural Network Model for Credit Card Transaction Fraud

O
utput

Layer
H

idden
Layer

Input 
LayerXi

Vi

Input Layer Weights
Input Variables

Wi,j

Raw Inputs - Vi

O,j

Y

z
I(j)

-10       -5        0         5       10

1.0

0.8

0.6
0.4

0.2

0

H(j)

-I(j)H(j)Sigmoid 
Activation 
Function

Sigmoid 
Activation 
Function

Input Variables: Vi – Raw Inputs
!"= # $" %&"' # $"

&() # $" %&"' # $"

*+=∑ !" ∗ .",+01
"23

4= 5
5678

Input Layer
H

idden Layer
O

utput Layer

8=∑ 9+ ∗ :+;
+23

9+=
5

567*+

z
K(j)

-10       -5        0         5       10

1.0

0.8

0.6
0.4

0.2

0

Y

-K(j)Y

h2 h3 h6 h7h1 h5h4

Y

BIAS

A
M

TO
TB

1

0 1 2 3 4 5 6

A
M

TO
TB

5

A
M

T1LN

U
TIL

O
TB

IN
A

C
T2

IN
A

C
T5

IN
A

C
T9

AAdvantage

C
LA

SSIC

PREFERRED

H
ILM

T

C
H

5A
D

1

D
ELQ

1

7 8 9 10 11 25242322212019181716151412 13

H
D

2G
Y1

A
M

TC
L1

LO
G

A
M

1

H
G

3D
Y1

M
O

B
1

H
G

H
A

M
1

N
C

LM
T

H
G

ISC
1

LO
G

M
N

1

H
SC

D
Y1

G
G

A
M

S1

Network for US Treasury Bond Yields
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Neural Network Model for Credit Card Transaction Fraud
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Neural Network Model for Credit Card Transaction Fraud
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● During training, values of  
variables for a given day 
are presented to the 
network
− The difference between the  

network output and its 
‘desired’ output (i.e., the  
actual market move) is  
backpropagated The actual networks had 27 

inputs and 7 hidden nodes.
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− Backpropagation consists of adjusting slightly each of the weights in the  
network in proportion to its ability to reduce the output  error.

− The entire training set is presented repeatedly in random order until network  
performance stabilizes  

− The technique is called the gradient descent method of error backpropagation.

The US Treasury Bond Model (cont.) 

● We used this method to set the weights of the network using as training 
data daily technical  indicators and  the resulting future price change over 
a minimum sample period of eight years prior to the test dates

The Neural Network Voting Model● Our actual trading model  
consisted of not just one,  
but 13 of the structures 
similar (but not identical) to  
that shown in the previous 
slide
− The idea behind having 

multiple models is to avoid 
the “local minima” problem

● The weights for each of the 13 networks were generated using the same 
structure of nodes, learning data number of trials, etc., but the initial 
random weights assigned to the connections for each network were 
generated using a different random seed 

13 Separate 
Networks



The US Treasury Bond Model (cont.) 
● Although each of the 13 models produces a continuous output score, that 

output goes through a series of transformations that ultimately  result in 
the generation of one of three signals: BUY(B), SELL (S), or NEUTRAL (N) 
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To my knowledge, this was the first usage of a voting model. This has now become 
commonplace.

● At the close of a given trading day, input variable values are fed  into the 
13 networks and the signal is calculated
− If 7 or more networks signal B (output > 0.66), a BUY is initiated, if 7 or more 

networks signal S (output < 0.33), a SELL, and if neither gets at least 7, the signal is 
N, NEUTRAL

− We call a trade of one-unit the equivalent of $100,000 face of US T-Bonds

● If the signal is B, we add one unit to our position, if it is S, we subtract one 
unit, and if the signal is N, we do nothing that day

● However, if any trades were done on the 12th-previous business day, that 
trade is unwound at the  current day’s  close

● On any given day, the maximum number of units that one can trade is two: 
one new position, and an unwinding of a previous one

● Similarly on any given day, the maximum size of our position could be  
long or short 12 units

Daily Trading Procedure
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T-Bond Network Performance
We evaluated the model’s performance in out-of-sample simulated trading from  
2Q92 to 4Q99, and in actual market trading beginning in 4Q99. 

● We conducted historical 
backtesting using this 
method, while recalculating 
the model parameters each 
quarter with additional data 
from the prior one

Historical Back-Testing Actual
Trading
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Performance of T-Bond Model

● The figure presents the results 
of our backtesting and trading
− The solid line in is the zero-
− profit axis, the heavy dashes show the  average monthly P/L over the sample 

period, and the light dashes  denote +/-1 standard deviation in monthly  P/L
− Of the 37  quarters tested, 22 are profitable, 13 show losses and 2  have no P/L 
− Profitable quarters have a mean P/L of $38,000, whereas losing quarters have an 

average P/L of -$25,000 
− The largest quarterly gain over the 1992-2001 period is $111,000 and the largest  

quarterly loss is $78,000 

● Variability in P/L is sometimes high, but has decreased in later years
− This may be due to the fact that each quarter we are adding cases to the training  

set such that the predictions for 2001 are generated from networks that have 
nearly  twice the learning cases as those for 1992
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T-Bond Network Performance (cont.)

Cumulative P/L from T-Bond Model● The figure shows cumulative P/L 

from 2Q94 through  September  

9, 2000

− The model generated $0 P/L in the  

first sample quarter (2Q92) and 

-$7,000 in 3Q92 (not shown in the  

cumulative  plot),"  

− The model has not had negative  

cumulative P/L since then  

− From April 1994 through

− September 2000, it had a cumulative P/L of $413,604, with  a  mean of $256 per 

business day  and a standard deviation of $5,151.  

− This gives an annualized Sharpe  Ratio of 0.79  for the period.  

● The historical probability of correct decision (i.e., Market  goes up I BUY and 

Market goes down | SELL) for each unit-trade is 54%  and this has been 

replicated in actual  trading from 3Q99  through  June 2001



Predicting Market Moves from Customer 
Trading Patterns

Machine Learning and Neural Networks in Finance



Predicting Bond Price Changes from Client Trade Flow
We used data from client trades, bond indicative data, and client type to 
predict moves in bonds prices.

● We used three types of information to predict bond price 
movements:
⎼ Trade information: Quantity and Direction
⎼ Bond Indicative Data: ID, Industry, OAS, Investment-Grade and High Yield

§ We collected both pre-trade and post-trade OAS spreads. The key observation 
time points as 1, 5, 10, 20 days before and after the trade and the trade date

⎼ Client Information: ID and Type
§ The groups are Insurers, Corporates, Banks, Asset managers, Hedge funds, 

Public sector, Pension funds, Other.
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Time Frame for Model Development and Testing
To remove the market impact from the data, all trades were analyzed 
relative to percent changes in the US Investment-grade bond index.

● The time frame is from Jan 2014 to Aug 2015, 20 months in total

● There are 109,890 trades, 1,908 clients and 6,100 bonds

Data Preparation

Raw
Data

After
Data

Preparation

Period: 1/14 to 8/15
Trades: 109,890
Clients: 1,908
Bonds: 6,100

Period: 1/14 to 8/15
Trades: 88,394
Clients: 1,406
Bonds: 5,105

● Data cleaning issues:
⎼ For newly issued bonds 

which did not have 20 days 
of past data we just set them 
to NA and excluded them 
from training

⎼ We removed clients with less 
than 50 trades over the 
observation period

⎼ We removed bond OAS 
outliers with more than +/-
2.7! from the mean

● After data cleansing, we have 
88,394 trades, 1406 clients and 5105 bonds for further study
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Data 
Preparation

Model Selection
We tested several methods in order to accurately predict corporate 
bond price moves over 1, 2, 5, 10 and 20 days.

Taxonomy of Models Tested● K-Means:
⎼ Advantages: fast, 

efficient, easy to 
implement 

⎼ Disadvantages: not 
robust, lack consistency 

● Client Performance 
Metric Designing:
⎼ Advantages: intuitive, 

easy to implement
⎼ Disadvantages: not 

stable 

● Markov Chain:
⎼ Advantages: time 

series, efficient

● Extreme Gradient Boosting Tree:
⎼ Advantages: high flexibility, regularized to control over fitting 
⎼ Disadvantages: Hard to tune the parameters 

⎼ Disadvantages: curse of dimension 
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Extreme Gradient Boosting Tree
The extreme gradient boosting tree yields the best results and will be the focus 
of the report. 

● The Extreme Gradient Boosting Tree is a widely used supervised 
learning method which can be applied to regression, classification 
and ranking problems 

Single Tree

Quantity

Single Tree

Bond Industry

Single Tree

Correctness

Single Tree

Bad Trade

Single Tree

N Trade

Single Tree

Bad Trade

Single Tree

N Trade

Single Tree

Client Type

Single Tree

Bond Industry

Single Tree

Bond Rating

Single Tree

N Trade

Single TreeSingle Tree

Good Trade

Single Tree

N Trade Good Trade

− Gradient boosting trees 
produce a predictions in 
the form of an ensemble 
of weak prediction 
decision trees

GBT Loss Function
Single Tree

Client Type

Single Tree

Bond Industry

Single Tree

Quantity

Single Tree

N Trade

Single Tree

Bad Trade

Single Tree

Good Trade

Single Tree

N Trade
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Boosting
Gradient boosting is a machine learning technique for regression and 
classification problems, which produces a prediction model in the form of an 
ensemble of weak prediction models.
● Most boosting algorithms consist of iteratively learning weak 

classifiers and adding them to a final strong classifier
− They are typically weighted in relation to the weak learners' accuracy. 
− After a weak learner is added, the data weights are readjusted,
− Misclassified input data gain a higher weight and examples that are 

classified correctly lose weight
− Thus, future weak learners focus more on the examples that previous 

weak learners misclassified.
● The main variation between many boosting algorithms is their 

method of weighting training data points and hypotheses
− AdaBoost is very popular and the most significant historically as it was 

the first algorithm that could adapt to the weak learners
§ AdaBoost (with decision trees as the weak learners) is often referred to as the 

best out-of-the-box classifier
§ When used with decision tree learning, information gathered at each stage of 

the AdaBoost algorithm about the relative 'hardness' of each training sample is 
fed into the tree growing algorithm such that later trees tend to focus on 
harder-to-classify examples.
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Training the Model
Gradient boosting is a machine learning technique for regression and classification 
problems, which produces a prediction model in the form of an ensemble of models

● Walk-Forward Method
− In order to incorporate changes in the corporate bond market yet have 

enough information to train the model, we used a rolling training period of 3 
months

− For each training period, we used the following 1 month of data to test the 
model performance

− We then moved the training and test samples one month in time and 
repeated the training and test procedure

● Variables
− For each modelling period, we input the 

client type, bond industry, bond grade, 
past return as independent variables

− The dependent variable is the post trade 
P/L calculated using the following 
formula:

− Then, we assign the P/L to one of three 
classes (-1, 0 ,+1) as shown on the right

Bottom
25%
(-1)

Top
25%
(+1)

Middle
50%
(0)

Transformed Post-Trade P/L

52
Benzschawel Scientific, LLC



Training the Model (cont.)
● Data Segmentation

− To improve the predictive power of the model, trades were segmented 
into buys and sells

− This is because we noticed that buy and sell trades have fundamental 
difference in trade behavior

− As we have interest in both short-term prediction and long-term 
prediction, we also set different lags (1, 2, 5, 10, 20 days) of P/L as 
dependent variables

● Portfolio Construction and Evaluation
− In our test set, we construct the portfolio in the following three steps:

1. Based on the model prediction, if the result is -1 we do the 
oppose of the trade direction. If the result is 0, we abandon the 
trade. If the result is 1, we follow the trade

2. Normalize our resulting trade P/L to ensure we use same capital 
for model and benchmark

3. Compare our constructed trade portfolio with the benchmark 
portfolio
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Modeling Paradigm Summary
● Training Paradigm

− We trained the model on a 3-month rolling window and tested 1-month out
− We divided our signal range into three regions for executing trades

Ø Training 3 months and  
Testing 1 month

Ø Features: client type/bond 
industry/bond grade/past 
return

Ø Signal Strength: Quantile
Ø Classify by signal strength:  

Post Trade P/L -> +1 / 0 / -1

● Generating Predictions
− We examined client buy and sell trades for holding times of 1, 5, 10 and 20 

days
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When the client traded, the model could either go along with the client, 
against the client or stay out of the trade. 

Portfolio Construction
We constructed portfolios for each client based on the model predictions and 
compared that with the clients’ performance.
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Enlarge the first 
three branches

XGBoost Tree Demonstration
The final prediction in the form of -1, 0 and 1 will be calculated as the sum of 
score given by all individual trees.

Given the full tree structure 
(below) is complicated, partial 
tree graph is presented on the 
right

A trade with quantity 
less than 0.4 million 
dollars will be assigned 
to the first ending note 
with score 0.14

A rated bond trade with quantity 
between 0.4 million and 1 million 
dollars and past 1 day P/L less than 
-10% will be assigned to the second 
ending node with score -0.01
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XGBoost Tree Model Feature Analysis
The Boosting Tree Model provides a decision path predicting each trade’s 
profitability, and gives some insights about features of good and bad trades.

● The pattern of variable 
importance is similar for buy 
and sell trades

● The most important feature in 
predicting returns from buy 
and sell orders is recent P/L 
− This is true even for 10-day 

prior P/L
− Thus, the model is mainly a 

momentum model

● Besides past performance, 
order quantity, corporate bond 
rating, and investors’ type 
(e.g., bank, asset management 
and hedge fund) also play 
important roles in this model.

Variable Importance for Buy Trades

Variable Importance for Sell Trades

1 Day Return 
Before Trade
5 Day Return 
Before Trade

10 Day Return 
Before Trade

Investor Type

Investment
Grade

Net USD
Quantity

Importance Measure

1 Day Return 
Before Trade
5 Day Return 
Before Trade

10 Day Return 
Before Trade

Investor Type

Investment
Grade

Net USD
Quantity

Importance Measure
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XGBoost Model Accuracy 
We measure model accuracy by percent correct over various time periods (1, 5, 
10 and 20 days).

● One measure of accuracy is the 
percentage of correct predictions 
(buy – bond up; sell – bond down)

● The figures plot probability correct as 
a function of the signal strength
− Signal strength percentile means that 

all signals at or stronger than that 
percentile are included in the analysis

● Performance is above 50% for signals 
greater than the 30% quantile 
− This means that for 30%-40% of the 

signals, model performance is at 
chance

● Accuracy decreases with decreasing 
signal strength for all lags
− in order to archive a high accuracy 

score such as 90%, a criterion of 5% is 
required
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Analysis of Trade Portfolios – Buy Trades
On average, the model outperforms our clients for bond buy trades. This is true 
over all tenors.
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Analysis of Trade Portfolios – Sell Trades
On average, the model performs similar to clients for bond sell trades. This is 
true over all tenors.
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Analysis of Trade Portfolios – Summary
● For both buy and sell trades, the model produces steadily growing 

cumulative returns as represented by the blue lines in the Figures
● For buy orders, the model outperforms the benchmark portfolio on all 

time frames (1, 5, 10 and 20 days)
− Credit may partially give to the fact that clients with buy orders did not 

perform very well
− During the monitoring period, the accumulated return for client portfolio is 

almost stays below zero

● Although the model performs better for client “buy” trades, it does 
not do much better for “sell” trades
− The client portfolio performance on sell orders is much better than for buy 

orders
− The model may not always beat the clients (e.g., 5 and 10 day)
− Still, the volatility of returns from the model is lower and this is reflected in 

better information ratios
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Analysis of Trade Portfolios – Information Ratios
● For buys and sells at most tenors results are significant

− Results for 5% high signal strength are often not significant owing to the 
small number of cases in that bucket
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Project Summary
● In this project, we trained XGBoost decision trees to differentiate 

profitable buy and sell trades over time periods of 1, 5, 10 and 20 day 
holding periods
− We chose to analyze client trades as we were able to obtain the exact prices 

at which trades were executed
− We trained the XGBoost model on rolling 3-month trades, with each model 

predicting bond spread moves relative to the market over the next month
− We used data from client trades, bond indicative data, and client type to 

predict moves in bonds prices

● Applying XGBoost model and using client trade flow, the resulting 
portfolios are able significantly more profitable than imputed client 
portfolios and generates more stable and increasing cumulative 
returns

I thank Wenyu Chen, Xiaoyi Li, Jie Sheng, Zhuolu Xu for their important contributions 
to this project. 
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Deep Learning Models

Machine Learning and Neural Networks in Finance



What is Deep Learning?
Deep learning is just very big neural networks on a lot more data, requiring 
bigger computers – J. Brownlee (2016)

● Leaders and experts in the field have various ideas of what deep learning is 
and we consider some of these

● Some common aspects of their thoughts on deep learning are:
— Deep Learning Involves Large Neural Networks
— Deep Learning is Hierarchical Feature Learning
— Why Call it “Deep Learning”?; Why Not Just 

Call it “Artificial Neural Networks”?

Deep Learning is Large Neural Networks

Brownlee, J. What is Deep Learning?  DEEP LEARNING, August 16, 2016

● Andrew Ng has described deep learning 
as:
— “ . . . for most flavors of the old generations 

of learning algorithms … performance will 
plateau. … deep learning … is the first 
class of algorithms … that is scalable. … 
performance just keeps getting better as 
you feed them more data

Deep Learning 
Algorithms

Older Learning 
Algorithms

Pe
rf

or
m

an
ce

Amount of Data

Deep Learning

How do data science techniques scale 
with the amount of data?
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Deep Learning Neural Networks 
Deep learning is just very big neural networks on a lot more data, requiring 
bigger computers – J. Brownlee (2016)

● A deep neural network is a neural network with more than two layers
— Deep neural networks use sophisticated mathematical modeling to 

process data in complex ways
— It is the added complexity of deep learning neural networks that makes 

optimization and regularization particularly important
— Most definitions include multiple layers of non-linear transformations
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Examples of Deep Learning Neural Networks 
There are many types of deep learning neural networks. The most successful 
have taken place in the domain of image processing and speech recognition.

Recurrent Neural Network

Image Classification Network

Classic Multi-Layer Network

Convolutional & Recurrent Network

Bi-Directional Recurrent Network
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What is Deep Learning? 
Why Did Backpropagation (i.e. “Deep Learning”) Not Take off in the 
1990s?

● Hinton says that people drew the wrong conclusions about why 
deep learning failed. The real reasons were
1. Our labelled datasets were thousands of times too small
2. Our computers were millions of times to slow
3. We initialized weights in a stupid way
4. We used the wrong type of non-linearity in the activation function

● Early “deep learning” approaches published by Hinton and 
collaborators focused on layerwise training and unsupervised 
methods like autoencoders

● Modern state-of-the-art deep learning is focused on training deep 
(many layered) neural network models using the backpropagation 
algorithm
— Multilayer Perceptron Networks.
— Convolutional Neural Networks
— Long Short-Term Memory Recurrent Neural Networks

An autoencoder learns to compress data from the input layer into a short code, and then 
uncompress that code into something that closely matches the original data. 68



Machine Learning Models of Corporate Bond 
Relative Value

Machine Learning and Neural Networks in Finance



Corporate Bond Relative Value

OVERALL GOAL: Outperform the cut-and-rotate method 
at beating corporate bond benchmarks
! In 2004, we developed a strategy that consistently outperforms global 

corporate bond indexes and have been testing it out-of-sample since then

! The strategy takes as input bonds' model-based expected default  
probabilities and recovery values in default along with credit spreads and
applies rules for portfolio construction based on those inputs

! We wanted to use additional explanatory variables in a non-linear model 
to more accurately determine fair spread and anticipate spread 
change/convergence
! Use neural networks to model non-linear relationship 

! Using those network-based relative value numbers, test the performance 
of the new relative value numbers in our cut-and-rotate strategy
! Predict 1 month change in OAS directly

The objective of this project is to improve upon our current method for beating corporate 
bond indexes by adding variables and applying machine learning techniques.
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Bond Pricing – Yield Spreads to Treasuries
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● To isolate the price of credit risk, corporate
bonds are typically quoted on a yield
spread-to-Treasury basis
⏤ The credit risk of a bond is the yield spread 

over the yield of a Treasury bond of similar 
maturity

⏤ To compute the present value of a bond with 
maturity, T:

Yield Curves for US Treasuries and 
for Single-A Corporate Bonds

The yield spread to Treasuries is the market standard for quoting and evaluating the 
relative riskiness among different credits and/or maturities.
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for Corporates:

Credit 
Spread

Yield spreads to Treasuries 
increase with maturity and 
decreasing credit quality.

Where PV is the price of bond with coupons (ct), rt
is the term structure of US Treasury spot yields at 
0.5 year intervals, and s is the yield spread of the 
credit curve to US Treasuries. Spread is often 
Basis Points where 1bp is 1/100 of 1%



Calculating Bond Relative Value - Default Risk
The success of our current "cut-and-rotate" strategy depends on having accurate estimates 
of  bonds' expected probabilities of default and recovery values. We consider first our model
for predicting bond defaults; Citi's Hybrid Probability of Default (HPD) model.

● We use the Merton model framework because idiosyncratic risk 
in the equity market appears to  lead the bond market
⎼ The equity market is larger, has more strategist coverage and is more

liquid
⎼ It is cheapest to put on a view of credit in the equity market

8

Hybrid Probability of Default Model● We use the hybrid 
probability of default (HPD) 
model to estimate firms' 
probabilities of default
⎼ The model is called a "hybrid" 

because it combines a 
"Merton-type" structural model 
with statistical variables on 
firms' size, profitability and 
cash flow 

⎼ This model is the best we know 
of commercial and industrial 
firms
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Calculating Bond Relative Value - Recovery Value
Expected losses on corporate bonds depend on both likelihood of default and recovery value 
in default. We currently use a decision tree model of recovery value in default.

• The decision-tree model embeds 
known determinants of recovery 
value in default. These are:
─ Credit cycle, seniority, industry 

sector, credit quality, and geography

The tree begins by assigning a recovery rate of 
40% for all securities. If one has no other 
information, the tree will output 40%
The first decision point is the adjustment for 
credit cycle dependency. The next step in the 
decision tree concerns seniority in the capital 
structure

Following the hierarchy shown in the figure, 
we assign the firm's seniority to one of the 
following six categories

The next adjustment in the model is for credit  
quality just prior to default. If nothing is input at  
this stage, the analysis advances to the sector  
adjustment stage

The recovery value is then adjusted for 
industry sector

The final adjustment is for geographical region 
as different regions have different bankruptcy
regimes, legal procedures and precedents

Model for Recovery Value in Default
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Bond Relative Value – Recovery Value 

● The decision-tree model 
embeds known determinants of 
recovery value in default
⎼ Credit cycle, seniority, industry 

sector, credit quality and geography

Expected losses on corporate bonds depend on both the likelihood of default and 
recovery value in default. We use a decision-tree model of recovery value in default.

Model for Recovery Value in Default



● The recovery-adjusted spread puts all 
bonds on a 40% recovery value basis 
and is calculated as:

Credit Spreads vs Log Default  
Probability and Log Duration

The pink circles are the 10% riskiest 
bonds, the gray are 10% riches and 
dark read are 10% cheapest

● We calculate bonds' relative 
values by plotting their recovery-
adjusted spreads to Treasuries 
versus the logarithms of their one-
year default probabilities and 
durations
⎼ Relative value is z-score vertical 

distance from the fair value line (the 
red line in the figure)

We calculate bonds' relative values as the amount of credit spread for their default  
probability, recovery value, and duration relative to the average of all bonds.
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Corporate Bond Relative Value

log $%&'() = *)+ *+ ∗ -./ 01%  + *2 ∗ -./ 134%  + 5%

● Thus, our model for yield spreads to 
Treasuries for bond i is:

● The relative value measure adjusts for effects of duration and 
recovery value on spreads 74



We decided to test if we could predict one-month changes in option-adjusted 
credit spreads.

Predicting 1-Month OAS Changes

● We used our relative value measure and other variables as input to 
regression and neural network models to predict one-month changes 
in bond spreads to US Treasuries

Input Variables for 1-Month OAS Change Models

! In addition to bonds’ relative values, we added the variables:
⎼ OAS Momentum (1M an 3M)
⎼ Relative Value Momentum (1M and 3M)
⎼ Spread-Times-Duration Momentum (1M and 3M)
⎼ Sector Relative Value Momentum (1M and 3M)
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Because several of the variables are normalized with respect to changes in the 
market, they are defined explicitly below.

Input Variable Definitions

● OAS Momentum N-Month:

● Relative Value Momentum N-Month:

● Spread Duration Momentum N-Month:

● Sector Relative Value Momentum N-Month:
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We chose a 20-bin output layer, scaled in units of 5% of the ranked population of 
one-month spread changes and applied the Softmax function to normalize the 
distribution.

Network Architecture – The Output Layer

Output Layer (Relative Value Percentiles)● We rank all the 
relative value 
numbers in the 
training sample 
and convert them 
to percentiles as 
the dependent

● Then for each training case output, we apply the Softmax function 
which takes an un-normalized vector of density across the 20 bins and 
normalizes it into a probability distribution

● The standard (unit) Softmax function is given by the standard 
exponential function on each coordinate, divided by the sum of the 
exponential function applied to each coordinate
— The sum of the exponential function acts as a normalizing constant, so 

the output coordinates sum to 1:
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variable for each bond



We chose the categorical cross entropy measure as the error function and 
used it as a criterion for choosing the network architecture.

Choosing the Loss Function and Network Architecture

● We used categorical cross entropy as the error function

● The double sum is over the observations i, whose number is N, and 
the categories c, whose number is C

● The term             is the indicator function of the ith observation 
belonging to the cth category. The                     is the model 
probability for the ith observation to belong to the cth category. 

● The network outputs a vector of C probabilities, each giving the 
probability that the network input should be classified as belonging 
to the respective category

● We used the cross entropy error function as a measure for deciding 
on the structure of the network (see next slide)
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We trained both a regression model and neural network model using the same 
input variables using the same walk-forward procedure used previously. 

Neural Network and Regression Model

● The regression model was an ordinary least squares regression
● The overall approach to the neural network architecture was similar to that 

for the relative value network. That is,
— We used a standard Softmax function with 20 OAS bins as the output layer 

of the network
— We used categorical cross entropy as the error function

● As before, to determine the 
optimal neural network 
architecture, we began with a 
single node in a single hidden 
layer, and add nodes and layers 
until performance fails to 
improve
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Number of Nodes

Categorical Cross Entropy Error vs 
Number of Nodes in Each Layer

— For example, the chart on the right 
shows that a two-layer network is 
preferable to a single layer

— We decided on a network with 2 
hidden layers with 7 and 9 nodes, 
respectively

We kept the same 
network structure for 
all the years tested.
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We used a walk-forward procedure to train each network, each year adding the 
data from the previous year.

Training the Network – The Walk Forward Procedure

● We used a ”walk forward” 
procedure to train a series of 
annual neural network models
— For example, the chart on the 

right shows that the first 
network model was trained 
only on the data from 2005

— That model was used to 
generate relative value 
numbers for 2006

● This process continued until the final model in 2015 which trained on 
data from 2005 through 2015 was used to generate predictions for 2016

2005 to Year X

05   06    07    08    09    10   11   12   13  14    15

Illustration of Walk-Forward Network 
Training Procedure

● Then data from 2006 were 
added to the training 
sample of 2005 and used to 
train the model to test on 
data from 2007

— Thus, each successive annual model was trained on an increasing amount 
of data
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Corporate Bond 1 Month OAS Change Network
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ReLU 
Function

Hidden 
Layer 2 

ReLU 
Function

Softmax Function

Output Layer
OAS Spread Change Percentile
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trained for 5,000 
Epochs with 
Learning Batch Size 
of 10,000
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One Month OAS Change Network Performance
Both the regression and neural net models of one-month OAS changes were 
designed to select bonds on relative OAS change only.

Annual Returns and Summary Statistics from Relative Value and 1-Month OAS Models

Average Annual
Year Spread Change Cut Rotate CnR Cut Rotate CnR Cut Rotate CnR Cut Rotate CnR
2006 95 -5 4 30 38 -4 21 14 -5 -19 -22 -5 -16 -40
2007 196 111 -4 -15 -17 13 -18 4 11 -4 13 11 7 28
2008 676 477 56 -10 8 134 -92 62 134 180 291 134 63 252
2009 212 -403 -71 614 553 -188 386 147 -190 18 -126 -190 135 -39
2010 171 -18 -6 129 122 -4 79 73 -3 98 91 -3 88 96
2011 237 65 18 30 46 21 -2 20 19 76 96 19 83 124
2012 152 -85 5 121 137 -6 103 98 -8 94 93 -8 92 94
2013 131 -29 -11 27 20 -16 47 31 -15 83 62 -15 67 39
2014 126 12 7 72 93 15 81 104 15 57 71 15 73 82
2015 165 46 47 -15 39 63 -6 64 66 56 129 66 78 127
2016 136 -42 -64 116 35 -82 55 -27 -80 117 35 -80 107 22   

Sum 2297 129 -19 1099 1074 -54 654 590 -56 756 733 -56 777 785
Mean 209 12 -2 100 98 -5 59 54 -5 69 67 -5 71 71

Std Dev 153 195 37 171 151 77 116 49 77 54 98 77 41 80
Ratio 0.0 0.6 0.6 -0.1 0.5 1.1 -0.1 1.3 0.7 -0.1 1.7 0.9

OAS
OLS Neural Network

1 Month Change in OAS
Benchmark

Relative Value Models
Neural Network

● The 1-Month OAS change models predicted spreads directly, so did 
not go through the cut-and-rotate paradigm.

● The OLS and neural net models had information ratios of 1.3 and 1.7, 
respectively, mainly by reducing the volatility of returns

⎼ These are far superior to the 0.6 and 1.1 information ratios of the 
benchmark and neural network cut-and-rotate strategies
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We also analyzed models’ performance using monthly returns by relative value 
decile.

1-Month OAS Change Model Performance (cont.)

-20

0

20

40

60

80

100

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

C
um

ul
at

iv
e 

U
nc

om
po

un
de

d 
R

et
ur

n 
(%

)

1M Change in OAS - OLS Model

Decile
Annual 
Mean

Annual 
StdDev

Info 
Ratio

1 8.93 6.33 1.41
2 8.54 6.13 1.39
3 7.86 6.57 1.20
4 7.42 6.53 1.14
5 7.07 6.80 1.04

Index 6.23 5.73 1.09
6 5.91 6.27 0.94
7 5.62 5.49 1.02
8 5.67 5.37 1.06
9 3.30 5.49 0.60
10 1.95 5.34 0.36
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1M Change in OAS - Neural Net Model

10

9
8
7
6
5
4

3
2
1

Decile
Annual 
Mean

Annual 
StdDev

Info 
Ratio

1 10.09 6.05 1.67
2 8.57 6.25 1.37
3 7.84 6.84 1.14
4 7.52 6.42 1.17
5 6.82 6.03 1.13

Idx 6.23 5.73 1.09
6 5.94 5.56 1.07
7 5.43 5.60 0.97
8 4.11 5.84 0.70
9 3.48 5.61 0.62
10 2.47 5.31 0.47

1M Change - Neural Network
Neural Net Model● We analyzed 

monthly returns 
by decile for the 
OLS and neural 
network 1-month 
change models

● Both models 
perform well at 
ranking absolute 
and risk adjusted 
returns by decile

● Returns from 
decile 10 versus 
decile 1 are 50bp 
per annum 
greater for the 
neural network 
model

Decile
Annual 
Mean

Annual 
StdDev

Info 
Ratio

1 8.93 6.33 1.41
2 8.54 6.13 1.39
3 7.86 6.57 1.20
4 7.42 6.53 1.14
5 7.07 6.80 1.04

Index 6.23 5.73 1.09
6 5.91 6.27 0.94
7 5.62 5.49 1.02
8 5.67 5.37 1.06
9 3.30 5.49 0.60
10 1.95 5.34 0.36

 
1M Change - OLS Model
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Annual 
StdDev

Info 
Ratio

1 10.09 6.05 1.67
2 8.57 6.25 1.37
3 7.84 6.84 1.14
4 7.52 6.42 1.17
5 6.82 6.03 1.13

Index 6.23 5.73 1.09
6 5.94 5.56 1.07
7 5.43 5.60 0.97
8 4.11 5.84 0.70
9 3.48 5.61 0.62
10 2.47 5.31 0.47

1M Change - Neural Network
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1
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Profitable Years = 10 of 11

Maximum Drawdown = -2.4% in Mar 2007

Neural Net Model

1-Month OAS Change Model Performance (cont.)
We analyzed profitability from each model of going long the bonds in decile 10 
and short the bonds in decile 1

● Both OLS and Neural Net models perform well in decile 10 versus decile 1 
long/short trades
⎼ The OLS model has 74% profitable months with an average return of 56bp 

(6.72% per annum) and an information ratio of 1.4 
⎼ The neural network was profitable 77% of months with an average return of 

63bp (7.56% per annum) and an information ratio of 1.7

Monthly Returns and Summary Statistics from 1-Month OAS Models

● The Neural Network model performs best
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1-Month OAS Change Model Performance (cont.)
We analyzed cumulative profitability from each model of going long the bonds in 

decile 10 and short the bonds in decile 1

● We analyzed cumulative uncompounded returns from the OLS and Neural 

Network Models

● Models perform similarly as regards profitable years and drawdowns, but 

the Neural Network had higher overall returns

⎼ Both are profitable 10 of 11 years and drawdowns are -1.9% and -2.4%, but the 

neural network has higher absolute returns

● Both models have steady returns after the credit crisis of 2008-2009

⎼ Recall the because of the “walk-forward” procedure, the samples for the 

models increase as time goes on

Monthly Returns and Summary Statistics from 1-Month OAS Models

OLS Model Neural Net Model

Benzschawel Scientific, LLC
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Analysis of Variable Contributions – 1M OAS Change
For the 1-month OAS change network, there is greater dispersion of variable 
importance rankings among analysis methods.

Importance of Variables in OAS Change 
Neural Network

● Relative value 
momentum is 
important in variable 
exclusion and 
univariate analyses

⎼ However, they are 
relatively 
unimportant using 
Garson’s method

⎼ Garson’s method 
ranks relative value 
and 1-month OAS 
momentum as most 
important

● Sector relative value momentum at 1M and 3M is important in 
variable exclusion and Garson’s method, but have only a weak 
univariate relationship to OAS changes 
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Variable Contributions - Derivative Analysis
The analysis of derivatives confirms the importance of relative value momentum 
in the neural network model, but relative value and STD momentum are important

● As for the exclusion 
and univariate 
methods, the derivative 
method assigns 
greatest importance to 
1-month relative value 
momentum

⎼ 3-Month relative 
value momentum is 
also important

● Consistent with

Summary Statistics from Derivative Analysis

● Average values of sector relative value momentum and OAS 
momentum indicate little directional bias in the effects of those 
variables.

 Input Variable Mean
Std  

Deviation Skew Kurtosis
OASMom_1M 0.03 0.05 0.71 3.58
OASMom_3M 0.00 0.05 -0.75 3.91
SecRelValMom_1M 0.02 0.02 1.27 3.52
SecRelValMom_3M 0.02 0.05 0.32 7.59
RelVal -0.09 0.07 -1.58 5.24
STD Mom_1M -0.07 0.15 -0.72 3.49
STD Mom_3M 0.01 0.12 1.86 6.87
RelValMom_3M -0.06 0.04 -1.71 5.26
RelValMom_1M -0.09 0.06 -1.69 5.22

Garson’s method, relative value is tied with relative value momentum 
as the third most important variable

87
Benzschawel Scientific, LLC



Variable Contributions – Distribution of Derivatives
The derivative method provides information regarding the strength of each 
variable, but the direction and consistency of its contribution.

Distribution of Derivatives for Input Variables
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Value of Derivative

● The distributions of 
derivatives show that 
variables whose mean 
derivatives are close to 
zero can have large 
influences on network 
responses

⎼ For example, OAS 
momentum (1 and 3 
month) derivatives 
have broad 
influences, but in 
both directions

● Increases in relative 
value and relative value 
momentum consistently 
lead the model to 
predict tighter spreads
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Predicting Market Moves from News 
Headlines

Machine Learning and Neural Networks in Finance



Project Objectives
The objective of this project was to generate sentiment scores from news 
headlines and use those scores to predict credit spread moves.

● In this project, we focused on using Natural Language 
Processing (NLP) techniques to build trading strategies for 
1-day horizons for the credit market using news headlines. 

● Using data scraped from multiple financial sources, we 
employ machine learning approaches of varying 
complexities.

● We find that pure sentiment prediction does not require 
models of very high complexity, but the link between 
sentiments and predictability of returns is not straight-
forward.

● We also find that approaches using the latest advances in 
NLP are better suited to predict future returns in credit 
indices, by using news headlines directly as inputs, 
instead of news headline sentiments



Introduction and Background
The objective of this project was to generate sentiment scores from news 
headlines and use those scores to predict credit spread moves.

● Natural language processing (NLP) is a branch of artificial 
intelligence that is being used more and more for both 
business and financial applications 
− Financial institutions, on both the buy- and sell-sides, are adopting the 

technology for tasks like robo-advisories, credit checks, employee 
surveillance, and investment strategies

− Financial literature on NLP has focused on metrics related to corporate 
governance, competitive dynamics, management quality, etc. that would 
be useful for longer-term investment signals in equity markets

Natural Language Processing (NLP)

● Traditional approaches have generally focused on 
conventional NLP methods like bag of words, TF-IDF scores to 
rank firms based on the frequency of occurrences of pre-
defined “relevant” words in the firms’ 10-Ks, analyst reports, 
earnings call transcripts or news
− There has also been progress in parsing through high-frequency 

information sources like news, employing the information gleaned in 
high frequency trading 



Bag of Words
● Bag of Words (BoW) is an algorithm that counts how many 

times a word appears in a document
− Those word counts allow us to compare documents and gauge their 

similarities for applications like search and document classification
● BoW lists words paired with their word counts per document

− In the table where the words and documents that effectively become 
vectors are stored, each row is a word, each column is a document, and 
each cell is a word count

● Before they’re fed to the neural network, each vector of wordcounts 
is normalized such that all elements of the vector add up to one
− Thus, the frequency of each word is effectively converted to represent the 

probabilities of those words’ occurrence in the document
− Probabilities that surpass certain levels will activate nodes in the network 

and influence the document’s classification

− Each of the documents in the corpus 
is represented by columns of equal 
length

− Those are wordcount vectors, an 
output stripped of context



Term Frequency-Inverse Document Frequency 
(TF-IDF)

● With TF-IDF, words are given weight – TF-IDF measures relevance, 
not frequency
− Wordcounts are replaced with TF-IDF scores across the whole dataset

● TF-IDF measures the number of times that words appear in a given 
document (that’s “term frequency”). 

− Those marker words are then fed to the neural net as features in order to 
determine the topic covered by the document that contains them

Term-frequency-inverse document frequency (TF-IDF) is another way to 
judge the topic of an article by the words it contains.

− Because words such as “and” or “the” appear frequently in all documents, 
those must be discounted

− That’s the inverse-document frequency part. The more documents a word 
appears in, the less valuable that word is as a signal to differentiate any 
given document

− That’s intended to leave only the frequent and distinctive words as markers. 
Each word’s TF-IDF relevance is a normalized data format that also adds up 
to one. 



Introduction and Background (cont.)
One common problem is that old approaches (like bag of words) lead to 
highly sparse predictor matrices.

● A standard way of dealing with the sparse matrix problem is creating 
vector representations for each word, called the “word2vec” 
algorithm (Mikolov, et al., 2013)
− Word2vec is a step towards transfer learning - for instance, Google has 

trained a freely-downloadable word2vec model outputting word 
representations using over a 100 billion words from a Google news dataset

● There are some issues with using off-the-shelf word2vec models
− One problem is that the data on which the model is trained is generic - it 

encompasses non-financial data, leading to meanings which might not 
make much sense in our context

− For instance, the closest words to “bull” in the Google word2vec model 
would be other animals like “cow” and “dog”, whereas we want to see 
similar words like “bear”, “rally” and so on

● Li and Shah (2017) used finance-relevant text data from micro-
blogging sites (StockTwits, Twitter) to train their word2vec models
− They created sentiment-specific embeddings so as to be able to predict 

text sentiment of any given text for any firm



Introduction and Background (cont.)
● Moore and Rayson (2017) used news headlines to train a 

word2vec model*
− Moore et al. try to predict sentiments in headlines concluding that 

deep learning approaches like Bidirectional Long-Short Term Models 
(BiLSTM) beat simpler approaches like Support vector Regressions 
(SVR) by 4-6%

● Schumaker and Chen (2007) take a linguistic approach to 
predicting intraday stock movements based on financial 
news
− They extract specific phrases from all documents split by sector, 

leading to a less sparse predictor set than a simple Bag of Words 
approach

− They conclude that firm- / sector-specific training for their models 
leads to better performance

* They have kindly open-sourced their model which we use for one of our approaches

● Recent work by Velay and Daniel (2018) used top 25 news 
headlines to predict the end-of-day value of the DJIA index
− They tried both statistical and deep learning models, but find that 

deep learning algorithms had difficulty figuring out the link between 
the headlines and the index trend



Introduction and Background – Our Approach

● Most previous approaches approaches have focused either 
on pure sentiment prediction, or on its effects in liquid 
markets like equities, with little attention being given to 
credit markets. 

● This study explores different approaches to predicting 
corporate bond price moves over a 1-day horizon, using a 
self-sourced dataset of news headlines

● We focus on both single-name credits as well as the 
investment grade and high yield credit index ETFs 
− These different levels of aggregations carry their own benefits and 

challenges. 
− One obvious benefit for single-name credits is the better one-to-one 

correspondence between a news item and the firm
− However, there are fewer headlines for individual firms than the 

market and  trading single-name credits involves relatively high 
transaction costs

In this project, we incorporate lessons from the above cited literature 
(among others) as we attempt to use sentiment data to predict corporate 
bond prices.



The Data
Headline data were collected from major finance news sources such as Wall 
Street Journal, Yahoo Finance, Washington Post and PR News

● Data were collected 
using the Wayback 
machine
− The Wayback Machine 

was launched in 2001 to 
address the problem of 
website content 
vanishing whenever it 
gets changed or shut 
down

− The service enables 
users to see archived 
versions of web pages 
across time, which the 
archive calls a "three 
dimensional index".

− Kahle and Gilliat created 
the Wayback machine 
hoping to archive the 
entire Internet and 
provide "universal 
access to all knowledge."



Data - Sources
In addition to the data from the Wayback machine, we were able to find 
sentiment scores from the Thomson-Reuters 2 Sigma data. 

● Wayback Machine Data (Crawl 
Data)
− The raw html files contain the date, 

headline, content, and link for each 
news item

− There is no sentiment data 
associated with the news items

− Although there are headlines, there 
is typically very little additional news

Data Source Properties

● 2 Sigma Data
− The participants were given access 

to organized and comprehensive finance data provided by 2 sigma (from 
2007-01-01 to 2018-07-31, total 9 million rows). 

− This dataset contains information at both article level and asset level and 
includes article details, sentiment and other commentary

− The sentiment class in the news data indicates the predominant sentiment 
class for this news item regarding to the specific asset

− Sentiment for each item is divided into three classes: Negative, Neural and 
Positive, then selected the class with the highest probability



● The aggregated level data was obtained by crawling the web
● Duplicate headlines were dropped from the dataset
● Over half of the data comes from the Wall Street Journal 

(WSJ)

We extracted a total of over 500,000 news headlines from the Wayback 
machine beginning in 2000.

Wayback Data by News Source

Number



Company Coverage
In addition to the data from the Wayback machine, we were able to find 
sentiment scores from the Thomson-Reuters 2 Sigma data.

● We chose two corporate bond index: LQD (investment-grade) 
and HYG (high yield) as our analysis targets
− The charts below show the number of news stories for each company 

covered in the 2-sigma data
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Predicting Returns from Individual Firms
In our first set of studies we summed the sentiment scores from the 2 sigma 
data on individual firms and used it to go long or short their bonds.

● Trading strategy for Individual firms from sentiment data
− For each target company, aggregate all the news before 4 pm on each 

trading day and sum their daily sentiment scores
− Go long their bonds if the sum of daily scores is positive; go short if 

negative; and do nothing if zero
− Trade with that day’s closing price and close position on the next trading 

day’s closing price
− Test on different 

time lag of the 
signals

Daily Sentiment Scores for Amazon

● An example of the 
summed daily 
sentiment scores 
for Amazon 
appears on the 
right
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which is the change is spread times the duration of the 
bond.

Sentiment Strategy for Individual Firms
We calculate the daily P/L of our long/short trades based on sentiment data 
by looking at the change in spread on the bond over the period in question.

● For a long position in a given bond, we calculate the daily 
P/L as:

● For a short position in a given bond, the P/L is the negative 
of the long position P/L above

● To eliminate the effect of changes in market spreads, we 
hedge the single name companies with the LQD index

● That is, we take the P/L of a single firm and subtract the 
appropriate  P&L of the index for each trading day

● Use the adjusted duration and spread change of LQD index 
to get the daily P/L of the firm in question
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Some Examples of Results for Individual Firms
We provide some examples of cumulative uncompounded returns from 
bonds of individual firms based on sentiment long/short trades (ignore 
transactions costs)
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● The performance differences 
across different time lags vary, 
which may indicate the limited 
power of the strategy



Firm Level Sentiment Prediction
We will not have access to 2 Sigma data going forward, we decided to build a 
model to mimic the 2 Sigma sentiment scores and use the to predict market 
moves.

● We will not have access to the 2 Sigma data going forward
● Need to “back-calculate” firm-level sentiment model from 

given information so as to be useful in trading
● Disadvantages of neural nets for sentiment prediction

− Too complex
− ~100k parameters
− Computationally difficult to train

● Past approaches have shown benefits of simpler models 
like Naive Bayes in sentiment classification, after 
appropriate text clean-up

● We decided to build a boosted tree model trained on the 2 
Sigma data to generate sentiment scores

● We then would use those sentiment scores to try to predict 
market moves for individual firms.



● For training, we used only those headlines with  a 

minimum of a 70% relevance score for a given firm as per 

2 Sigma

● Split data into 80% training and 20% test (non-random 

sampling)

● To process the news headlines we do the following:
– Convert to lower case and remove numbers
– Remove short words (with length < 3) 
– Remove stop words - the, and, of, ...
– Remove words not recognized as part of an “English dictionary.”
– Lemmatize words
– Choose words that are relatively common across all news headlines for a 

specific firm

● Run a boosted trees model (bagged trees)

● Check sentiment prediction accuracy, number of trades 

annually based on different probability thresholds

Firm Level Sentiment Prediction - Methodology
We trained an XGBoost tree model to predict sentiments scores from the 9 

million Thompson-Reuters 2 Sigma news items.



Input to XGBoost Model
The inputs to the XGBoost model are "term count" matrices for each firm: each 
row is a news headline, and each value is the number of times a word occurred.

Sample of Input to XGBoost Model

● The input data is a "term count" matrix
− Each row corresponds to a news headline
− Each value in the matrix corresponds to the number of times a certain word 

occurred in the sentence 
§ For instance, in the 2nd sentence, the word "update" occurred once

● The matrix has 291 columns for this firm, where each word 
corresponds to a unique word. The list of words is unique for each 
firm and is selected algorithmically, depending on certain criteria.

● The XGBoost model is built on the foundation of decision trees 
− It creates weak classifier trees (AKA small trees) and sequentially keeps 

adding such trees to the model, focusing more on rows that were mis-
classified in previous trees



Tickr Threshold Precision 
Positives

Precision 
Negatives

Annual 
Signals

AAPL 0.33 48% 79% 245
AAPL 0.5 71% 88% 199
AAPL 0.6 70% 90% 156
AAPL 0.7 78% 92% 121
ABT 0.33 67% 79% 74
ABT 0.5 77% 87% 62
ABT 0.6 83% 91% 50
ABT 0.7 86% 97% 37

AMZN 0.33 60% 71% 233
AMZN 0.5 64% 82% 227
AMZN 0.6 74% 89% 204

Out-of-Sample Accuracy for Selected Firms

Out-of-Sample Performance
The out-of-sample performance of the XGBoost sentiment model appeared 
to be very good.
● The model outputs a signal 

of percent positive, neutral 
or negative
– The Softmax function 

normalized their sum to 1.0
– The category with the 

largest value is the one 
with the highest value

● To illustrate the 
performance of the model, 
the table shows the model 
accuracy for various 
threshold values
– The table shows that the

model performs above chance for almost all thresholds for both 
positive and negative sentiment
Also, performance increases as threshold increases, but number of 
cases decreases



Predicting Returns from XGBoost
Although the XGBoost model appears good at predicting sentiment, it does 
not perform as well at predicting returns from individual firms.
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Predicting Index Returns from Sentiment Data
We decided to predict index returns because of the greater number of news 
headlines and lower transactions costs

Objective:
● Directly use the sentiment scores to forecast index 

movements (LQD / HYG)
● These are ETFs for the investment-grade and high yield 

corporate bond indexes, respectively
● They are extremely liquid and have small bid/ask spreads

Challenges:
● Removing daily price impact on the ETF from movements 

in Treasury yields
● How to handle features, as we have multiple news 

headlines per day
● How to determine the effects of the time horizon for 

prediction and testing



We Use Bond Indexes as a Proxy for the ETFs
Because we can get daily spread changes on investment-grade and high 
yield bond indexes, we use those as a proxy for their ETFs.

● We used spread changes in Bloomberg/Barclays corporate 
bond indexes as proxies for the ETF moves
– LUACTRUU is the investment-grade index
– LF90TRUU is high yield indexes
– Their daily spread moves are available with changes in US Treasury 

yields removed 
● Metrics
– Duration (OPTION_ADJ_DURATION_SOV_CRV)
– Spread (OAS_SOVEREIGN_CURVE)
– Close Price (PX_LAST)

● Dependent Variable for Training: Spread move up or down
– Up (Label “1”): Spread(t+1) – Spread(t) >= 0
– Down (Label “0”): Spread(t+1) – Spread(t) < 0

● Methodology
– Use news before 4pm to predict the spread’s movements
– News after 4pm will be used to predict next day’s movements
– Do feature engineering (flatten, extraction, …) for news per day



Training data size 1249

Test data size 354

Training data positive ratio 45% 

Test data positive ratio 51%

LUACTRUU – Investment-Grade Bond Index

LUACTRUU
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● Our sample for the 
LUACTRUU consisted of 
daily spread changes 
from 01-Jan-2010 to 05-
31-2016

● The training sample 
consisted of OAS 
changes from 01-Jan-
2010 to 12-31-2014
– This was 1249 trading days
– 45% of the trading days the 

OAS change was positive 
(market bond yields rose)

● The out-of-sample test 
periods ranged from 01-
01-2015 to 05-31-2016
– This was 354 trading days
– 51% of the trading days the 

OAS change was positive

Daily Bond Spreads

Sample Statistics



Date
Positive_
mean

Positive_
max

Positive_
min

Positive_
q0.25

Positive_
q0.75 ... Is_Monday ... Is_Jan ...

1/4/10 0.42765462 0.856822 0.0259025 0.198021 0.580439 ... 1 ... 1 ...

1/5/10 0.39551849 0.856924 0.0242462 0.1914795 0.56168425 ... 0 ... 1 ...

1/6/10 0.37966194 0.856859 0.020735 0.177211 0.5601955 ... 0 ... 1 ...

1/7/10 0.36742522 0.856851 0.0229957 0.17956425 0.55421 ... 0 ... 1 ...

1/8/10 0.35409329 0.856712 0.0212103 0.175775 0.543231 ... 0 ... 1 ...

Feature Extraction 
We summed sentiment scores over the course of a given day in order to 
make predictions for a trade (long / short / no trade) just before the close.

● Daily sentiment data from Thompson-Reuters 2 Sigma were 
divided into positive, negative, and neutral sentiment 

● Each class was then “flattened” before input to the 
regression
– Flattened data were: mean, max, min, 25th and 75th percentiles

● How to handle features, as we have multiple news 
headlines per day

Example of Flattened Data for Positive Sentiment



● Elastic Net is a linear regression model trained 
with L1 and L2 prior as regularizer
– Regularization methods are designed to avoid overfitting
– Our features are not complicated

● The Elastic-net is useful when there are multiple 
features which are correlated with one another
– The Lasso method will pick only one of them

● Elastic-Net also inherits some of Ridge’s stability 
under rotation

Reference: https://app.datarobot.com/model-docs/tasks/LENETCD-Elastic-Net-
Classifier-mixing-alpha-auto-Binomial-Deviance-.html

Elastic Net Regression Model
The elastic net is a regularized regression method that linearly combines 
the L1 and L2 penalties of the lasso and ridge methods.

https://app.datarobot.com/model-docs/tasks/LENETCD-Elastic-Net-Classifier-mixing-alpha-auto-Binomial-Deviance-.html


With a binary 50% threshold, the model is only marginally predictive, but as 
signal strength increases, accuracy also increases.

Elastic Net Regression – Out-of-Sample 
Performance

● For a binary 50% 
threshold, out-of-
sample probability 
correct is 55% for 
long and short 
trades combined
– This corresponds 

to an area under 
the ROC curve of 
0.571

● Performance increases as thresholds increase, but number 
of opportunities decrease
– For 60% accuracy, one gets only 52 predictions of 354 days (14% 

trading days)
– For 70% accuracy, one gets only 17 (5% trading days) predictions
– For 80% accuracy one gets only 12 (3% trading days) predictions

A
cc

ur
ac

y 
(%

)

50  52   56  59  62   65  68  71  74   77  79  

1.0
0.8
0.6
0.4
0.2
0.0

Signal Threshold (%)

N
um

ber of Predictions

400

300

200

100

0

Accuracy

Predictions

Chance

Accuracy versus Signal Strength



115

Predicting Market Moves Directly from News 
Headlines
We decided to predict market moves directly from news headlines, rather 
than going through the intermediate step of sentiment scores.

● Word to vector technology transforms words in natural 
language into dense vectors, and semantically similar 
words have similar vector representations
– The methodology of generating word vectors is based on statistics 

(co-occurrence matrix, SVD decomposition) to the neural network-
based language model

● Before discussing the model, we discuss briefly the 
classical language models: from word2vec, ELMo to most 
recent and innovative model, BERT
– BERT stands for (Bidirectional Encoder Representations from 

Transformers) 

Methodology



Word and sentence embeddings have become an essential part of any Deep-

Learning-based natural language processing systems.

● Word2vec and ELMo are two versions of universal 

embeddings we consider here
– Word2vec was created by a team of researchers led by Tomáš 

Mikolov at Google and patented

– ELMo was developed by. Peters, Neumann, Iyyer, Gardner, Clark, 

Lee and Zettlemoyer at the Allen Institute for Artificial Intelligence

● A huge trend is the quest for Universal Embeddings: word 

embeddings that are pre-trained on a large corpus and can 

be plugged in a variety of downstream task models 

(sentimental analysis, classification, translation…)
– A word embedding represents a word with numbers

– By doing so it makes natural language computer-readable

– These universal embeddings incorporate some general 

word/sentence representations learned on the large dataset

Methods for Standardized Embeddings

● The Word2vec and ELMo models are described in the next 

couple slides



Word2Vec
Word2vec is a group of related models that are used to produce word 
embeddings.

● Word2Vec models are two-layer neural networks that are 
trained to reconstruct linguistic contexts of words. 

● Word2vec takes as its input a large corpus of text and 
produces a vector space, typically of several hundred 
dimensions, with each unique word in the corpus being 
assigned a corresponding vector in the space 

● Word vectors are positioned in the vector space such 
that words that share common contexts in the corpus are 
located in close proximity to one another in the space.
– It doesn’t distinguish the different meaning of a word with the 

same tokens
– For example, the word “bank” can relate to the financial 

institution or a river bank. The traditional word2vec is not able to 
capture this granularity



Word2Vec (cont.) 
● Word2vec trains words against 

other words that neighbor them 
in the input corpus
– It does so using context to predict 

a target word (continuous bag of 
words - CBOW) or using a word to 
predict a target context, which is 
called skip-gram

CBOW Skip-gram

will output a much higher probability for “Union” or “Russia” than it will 
for “Sasquatch”

Training the Word2Vec Network
(Target word is in blue)

● Train the network by feeding it 
word pairs found in training 
documents
– The network is learns the 

statistics from the number of 
times each pairing shows up

– For example, the network is 
probably going to get many more 
training samples of (“Soviet”, 
“Union”) than it is of (“Soviet”, 
“Sasquatch”)

– After training, if you give the 
network “Soviet” as input, the it



The ELMo model solves the failure of Word2vec to distinguish the different 
meaning of a word with the same tokens.

ELMo (Embeddings from Language) Model

● ELMo uses bi-directional 
LSTMs to generate features 
for downstream tasks, which 
bring two advantages:
1. ELMo representations are 

purely character based and can 
learn the complex 
characteristic of word usage

2. Learn the change of word 
usage according to the 
different context in which it is 
used

The ELMo Model

● The bi-directional LSTM consists of 2 parts: a forward LM and a 
backward LM 
– The forward LM tries to predict the next word given all the previous words 

from left to right:

– For each position k, the LSTM outputs a context-dependent representation           
where where j=1,...,L and the top layer         is applied on a Softmax function to predict 
the next word tk+1



Bert model 
characteristic
s

● Bidirectional Encoder 
Representation from 
Transformers

● Unsupervised Pre-
training

● Pre-train deep 
bidirectional 
representations by jointly 
conditioning on both left 
and right context in all 
layers

The BERT Model Architecture
Transformer Architecture & Benefits

● Instead of the 
recurrent 
neural 
network, it 
uses attention 
to boost the 
speed with 
which these 
models can be 
trained, lends 
itself to 
parallelization

● Can be 
extended to 
an intense 
layer and 
improve 
accuracy

BERT Model



Sentence-Level Embedding and Encoder Detail
BERT Input Representation

The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings

First step:
Calculate the Query, Key, and 
Value matrices for each word
The dimension of embedding 
changed to 512 to 64

Self-Attention Calculation

Following steps: 
Q*K(score) determines how much 
focus to place on other parts of the 
input sentence as we encode a word at 
a certain position.  dk=64 here



Relation to Attention and Bag or Words Pattern

● The query-key product is high when query and key are in the same sentence 
(left), and low when they are in different sentences (right)



Predicting Index Moves with the BERT Model
Google has released pre-trained models from and we applied this architecture and fine-
tune with our own data, sentence level news headlines from Two Sigma.

● We tested this standard workflow on a single firm, AAPL, and tried to predict its 
daily spread changes based relevant headlines
– The direct fine-tuned BERT model made almost one-side predictions (all positive) 

within a very narrow forecasting range (51 to 52%) 
– This means the model cannot capture any signals at all and simply takes the slight 

imbalance from the training set to boost its accuracy

● Predicting AAPL spread changes
– Less data, no large GPU required
– 16K headlines from 2013-2016

§ Train Set: 2013 - 2015
– 12.7K headlines; 50.4% Up

§ Test Set: 2016
– 4.1K headlines; 52.7% Up

● Also tried predicting 2Sigma’s 
sentiment scores
– labels: -1, 0, 1
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Predicting Sentiment with the BERT Model
We used the BERT model to predict 2 Sigma sentiment data with greater 
success.

● Why does the fine-tuned BERT model fail on the spread 
change task?
– To answer this question, we switched the task from predicting 

spread changes to predicting the sentiment labels

● Despite sentiment prediction being a three classification 
problem, the accuracy increased to 66%

● The word-embedding trained from BERT is for a general-
language purpose by a set of standard NLP techniques 
such as work masking and contextual predictions
– We looked to modify BERT to work better in the context of spread 

changes
– Almost impossible to modify pre-trained based model 

§ Need to redo the pre-training process, large finance specific corpus, 
large GPU computing resources, time

– Is possible to change last layers / downstream models
§ Only use a fine-tuned BERT as an embedding tool to extract features
§ Still takes advantage of Google’s large pre-trained model but allows 

more flexible downstream models



BERT: Sentence Embedding
We suspected that using a more complicated downstream model to replace 
the original soft-max layer might generate better predictions

The Revised BERT Workflow

● After fine-tuning the Base (12 layers) BERT model, we pick the word 
embedding from the 11th layer and use average pooling to get a fixed-
dimension vector that represents each headline
– Those fixed-dimension vectors then act as the input features for a 

downstream machine learning model to forecast spread changes



BERT: Why We Pick the 11th Layer
● The BERT model is pretrained with a bi-partite target (masked 

language model and next sentence prediction), which makes the 
last layer too biased to those two targets
– Using the last layer is as same as in stacked LSTM/CNN
– Taking a layer in front, the transformed embedding still carries the 

original word information without BERT’s self-attention benefits

Reference: https://hanxiao.github.io/2019/01/02/Serving-Google-BERT-in-Production-using-Tensorflow-and-
ZeroMQ/
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PCA Evaluation of BERT Layers using “Best-as-Service”

● Xiao Han applied BERT model on 20K news titles and used PCA to 
flatten each layer’s output into a 2D plot
– Each color represents a topic of those news, we can easily observe that 

the classification effects are most obvious in the last two layers

https://hanxiao.github.io/2019/01/02/Serving-Google-BERT-in-Production-using-Tensorflow-and-ZeroMQ/


● Each headline was converted into a vector (1 x 768)

● Also used (one-hot) categorical features from date for 
days of week and months of year

127

BERT Model: Encoded Features

Date headline Is_Monday ... Is_Jan ... 0 1 2 ...

5/1/13
garmin profit 

misses estimates 0 ... 0 ... -0.21515 0.66142 0.068004 ...

5/1/13
reuters insider -

u.s. ... 0 ... 0 ... -0.30309 0.81203 0.199902 ...

Sub-Sample of Input Vector



AAPL: 
Per news data 
directly

Index: 
Cannot do it that 
way as data too 
large (13GB after 
encoding)
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Empirical Results: Predicting LUACTRUU 
● We use headlines from 2010-01-01 tot 2014-12-31 as the 

training set and headlines from 2015-01-01 to 2016-05-31 as 
the test set
– More than a million LQD relevant headlines are selected
– The fine-tuning process took more than 24 hours with a 20GB RAM 

GPU and then 4 hours to convert into numerical sentence 
embedding, where each embedding has a fixed length 768

● Data Pre-Processing
– Use list of tickers (Bloomberg) to filter relevant news from 2010 to 

2016

● Predicting LQD’s spread changes
– Haas GPU Server (20GB GPU RAM)
– 1M+ headlines from 2010 to 2016

● Training Time
– 1M+ News took more than 24hrs with a 20GB RAM GPU to fine tune a 

BERT base model (12 layers)
– After Embedding, the embedded data (numerical features) is around 

13GB
– Average encoded vectors per day instead of training at news level 

(How we did for AAPL)



BERT Predicting Corporate Bond Index Changes
Downstream Models using BERT Embeddings

Downstream Model Performance

Model Name Accuracy AUC

True 
Positive 

Rate

True 
Negative 

Rate

Gradient Boosted Greedy Trees Classifier with Early Stopping 0.564 0.6237 0.5633 0.5648
RuleFit Classifier 0.5724 0.6157 0.5829 0.5607
AVG Blender 0.5721 0.613 0.5924 0.5495
Generalized Additive Model 0.5728 0.6037 0.6056 0.5363
Elastic-Net Classifier 0.5623 0.5997 0.5829 0.5394
Extra Trees Classifier (Gini) 0.564 0.5953 0.5943 0.5302
Decision Tree 0.5585 0.5782 0.5856 0.5282
Tensorflow Neural Network (1 layer, 128K hidden units) 0.5541 0.5756 0.6826 0.4109
Logistic Regression 0.5402 0.5752 0.5428 0.5373
Random Forest 0.5256 0.5346 0.5965 0.4464
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OOS Metrics Sentiment BERT

Accuracy 55.24% 56.50%

AUC 0.5717 0.5716

F1 0.5537 0.5575

Precision 56.00% 57.75%

True Pos Rate 54.75% 53.89%

True Neg Rate 55.75% 59.20%

● The BERT model outperforms 
the original sentiment model 
(with 2 sigma data) with 1.2% 
more accuracy without 
thresholding
– 1% less accurate on positive 

predictions and 3% more accurate 
on negative predictions.

● Thresholds
– 60% Accuracy with 114 predictions; 

70% with 17 predictions; 100% with 
4 predictions

Performance : BERT vs. 
Sentiment Benchmark 

Accuracy

Predictions

Chance

50   53  57  61   65   68  72   76   80  83   87       

Results: Sentiment Model  versus BERT



Results: Sentiment versus BERT (cont.)
● BERT results are hitting thresholds faster in terms of 

Accuracy and TPR. In terms of TNR, the original model is 
much faster at 60% threshold but break afterward.
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● It is possible to predict one-day changes in corporate bond 
spreads at better-than-chance levels
– Models based on 2 Sigma’s sentiment data as well as the modified BERT 

model perform better than chance  

● The BERT model outperforms the original sentiment model 
with 1.2% greater accuracy without thresholding
– BERT is 1% less accurate on positive predictions and 3% more accurate on 

negative predictions

● By examining performance at probability correct 
thresholds of 60, 70, 80% Accuracy/TPR/TNR:
– In Sample: BERT results are much smoother and always beats the original 

model

– Out of Sample: 

§ BERT results are hitting thresholds faster in terms of Accuracy and True Positive 

Rate 

§ In terms of True Negative Rate, the original model the 60% threshold much 

faster,  but underperforms the BERT model at higher thresholds.

Summary of BERT Model Performance

I thank Yiming Yu, Juntao Fang, Nathan Johnson and Teddy Legros from the University of 
California at Berkeley’s MFE program for their important contributions to this project.



How AI/ML is Transforming Bond Markets

Machine Learning and Neural Networks in Finance



One of the last projects I worked on in the credit trading business was optimizing 
credit trading,  inventory management, and building a credit trading robot.

How AI/ML is Transforming Credit Markets

● Recently, we have made progress at developing a corporate 
bond trading robot (i.e. an algorithm that makes markets in 
corporate bonds 
⏤ This was done using a deep learning neural network

● Typically, traders are concerned with making money on the 
bid/ask spread of the bonds that they trade, but this ignores 
other important considerations, many of which have only 
begun to be studied (by us).

● For example, these include:
1. Client Accuracy by Holding Period: The previous study showed 

how we can predict bond price moves from client activity (we 
have other evidence as well). Should we bid aggressively for 
bonds that are going to decrease in price, and vice versa?  In 
general, the answer is “no”, but not always as it depends on 
other factors.
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2. Bond Relative Value: For example, if a client sells a bond and the 
trading desk holds it in inventory for one day, over 52% (of 200,000 
trades) the bond will decrease in price. Furthermore, we find that, 
on average, clients buy the “cheap” bonds and sell the “rich” ones 
(which we know from the CaR strategy that cheap bonds richen and 
vice versa). Thus, bond relative value is an important consideration 
in what should be the bid/offer for a bond.

3. Bond Liquidity:  We have analyzed how long on average bonds with 
given characteristics will remain in the trading desk’s inventory (i.e., 
their liquidity). If a bond is hard to sell (or buy) and its price will go 
against us, we ought not bid aggressively for that trade.  

4. Net Inventory Position: Trading desks get charged for the price 
volatility of their inventory as it uses the firm’s capital. Thus, if the 
desk is net long and a customer wants to sell a bond, one should, 
all else equal, be eager to buy it as it makes the desk more neutral. 
Thus, it is important to consider how a bond will affect one’s net 
holdings.

How AI/ML is Transforming Credit Markets
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5. Other Factors: There are other factors as well (bond volatility and 
suitability for inclusion in an ETF), but we can ignore those for 
now

● It is difficult, if not impossible, for a trader to take into account all 
these factors when faced with an RFQ (request for quote). 
However, a machine can do this.

● In fact, we have begun to take these factors into account to 
present to traders what we think is the optimal bid/ask for any 
given bond. 

● Right now, we are only able to generate a “red” (do not bid 
aggressively) or “green” (bid aggressively) signal to the traders 
when an RFQ comes in. However, the ultimate goal is to actually 
set the bid/ask spread for the trader.

How AI/ML is Transforming Credit Markets
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● The rise of machine learning is a watershed event for quants
⏤ However, new sets of skills are required and old ones are less critical 

● Although it remains important for quants to know some 
things about quantitative finance, including derivatives 
pricing
⏤ These include term structure modelling of interest rates, options 

pricing, stochastic calculus and credit models, 
● However, these will likely not be central to many jobs
● Successful quants will require expertise on machine learning 

methods of all types, along with an increasing reliance on 
statistics and inference methods
⏤ Experience and confidence in handline unstructured problems and 

related data will be in demand
● Strong computing science skills that focus on data storage 

and management will be required 
● Finally, there will be no substitute for knowledge of the 

trading business.

AI and ML methods are becoming critical in bond trading activities. This has 
important implications for quants, traders, salespeople and fundamental analysts.

How AI/ML is Transforming Credit Markets

Quants
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● The role of the trader of the future will also change
● Traders will need to be cognizant of the many factors that 

affect the optimality of their trades and. For example, if a 
trader can not
⏤ They will be evaluated with respect to those factors
⏤ These include term structure modelling of interest rates, options 

pricing, stochastic calculus and credit models, 
● However, these will likely not be central to many jobs
● Successful quants will require expertise on machine learning 

methods of all types, along with an increasing reliance on 
statistics and inference methods
⏤ Experience and confidence in handline unstructured problems and 

related data will be in demand
● Strong computing science skills that focus on data storage 

and management will be required 
● Finally, there will be no substitute for knowledge of the 

trading business.

How AI/ML is Transforming Credit Markets
Traders
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● Salespeople will now be required to know their client in 
even greater detail
⏤ They will need to understand the client’s profitability over time 

along with the characteristics of the bonds they tend to buy
⏤ Clients will reward them for keeping them out of trades that are 

unprofitable and showing them unskillful patterns of trading 
behavior

● Salespeople will need to know the characteristics of bonds 
they are selling
⏤ Is the bond trading “rich”, “cheap” or “fair”
⏤ What is the probability that the trade will be profitable for the client?  

Over what horizon?

● Salespeople will be more proactive
⏤ If a bond becomes available that the salesperson thinks would be 

profitable for the client, they should contact the client
⏤ If the client bids for a bond not in inventory but there is a bond with 

similar characteristics in inventory, the salesperson should let the 
client know

How AI/ML is Transforming Credit Markets
Salespeople
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● Machines will take over a portion of what fundamental 
analysts do
⏤ Systematic computer-based trading strategies have already become 

ubiquitous in the foreign exchange and equity markets
⏤ This is also moving to the bond market
⏤ The combination of advances in natural language processing and 

its relationship to market moves will provide competition to 
analysts from machines

● The ability to analyze sentiment data independent of a 
human will pose fundamental changes for analysts 
⏤ There will be a greater demand for good research to feed those 

models
● Analysts will be more accountable

⏤ It will now become easier to track analysts forecasts for accuracy
⏤ Analysts will be evaluated as to whether they add useful 

information over what comes out on average
⏤ Analysts who are correct will be highly sought after for their 

opinions, but those that are poor will now be exposed and 
eliminated.

How AI/ML is Transforming Credit Markets
Fundamental Analysts
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