
Terry Benzschawel
Benzschawel Scientific, LLC
tbenzschawel@benz-sci.com
+1 646-599-1854

IAQF/Thalesians Seminar
April 8, 2019

All Distribution Rights Reserved

Benzschawel Scientific, LLC β – !

Financial Applications of Machine Learning

NNet Fraud
Regression Fraud
Non-Fraud

CAP Curves for Fraud DetectionArtificial Neuron Neural Network

mailto:tbenzschawel@benz-sci.com

Financial Applications of Machine Learning
1. Overview, Introduction and Some Early History

a) Artificial Neurons
b) The Perceptron and Perceptron Networks
c) Neuron Activation Functions
d) Backpropagation

2. Early Applications
a) Why Do Neural Networks Work?
b) Credit Card Fraud
c) Credit Card Attrition
d) Interpreting Neural Network Decisions
e) US Treasury Trading

3. Predicting Market Moves from Customer Trading Patterns
4. Deep Learning Models

a) Corporate Bond Relative Value and OAS Changes
b) Predicting Market Moves from Trading Data
c) Using Sentiment Data to Predict Market Moves

5. How AI/ML is Transforming Bond Markets

2

Benzschawel Scientific, LLC

Overview, Introduction and Some Early
History

Some Financial Applications of Machine Learning

Schematic diagram or a section through the peripheral retina. The layers
or the retina are indicated on the right.

A Neural Network Schematic diagram of a section
through the peripheral retina

Photoreceptors

Inner Retinal Layer
Horizontal Cells

Bipolar Cells

Amacrine Cells

Outer Retinal Layer

Ganglion Cells

A Neural Network

Benzschawel Scientific, LLC

4

Neural Networks and Artificial Neural Networks
An artificial neural network (ANN) is a mathematical computing
system inspired by studies of the brain.

,
,

Benzschawel Scientific, LLC

5

Artificial Neuron
An artificial neural network is based on a collection of connected units or nodes
called artificial neurons, which loosely model the neurons in a biological brain.

Output
Path

Processing
Element

Weights

X1

X0

Xn

wj,n

wj,0

Transfer

Sum

yj

X3

wj,3

Neuron

Yj = f(Ij) Transfer

Summation

Dendrites

Axon

Axon

Nucleus

Synapses

Biological Neuron Artificial Neuron

● The analogy between biological neurons and artificial neurons is
straightforward
− The inputs to the artificial neurons correspond to axons of incoming neurons
− The weights on the inputs to the artificial neuron correspond to the strength of the

connection between the axons of the incoming neuron to the dendrites of target
neuron

− The summation and transfer functions of the artificial neural network correspond
to the cell body of the neuron. It has two parts:
§ The first part takes the input (analogous to the dendrite) and performs a summation
§ Based on the aggregated value, the second part, the transfer makes a decision

− The output of the artificial neuron is analogous to the axon of the neuron

Benzschawel Scientific, LLC

6
Benzschawel Scientific, LLC

Evolution of the Artificial Neuron
The artificial neuron has undergone several iterations to result in the neurons that
are used in neural networks today.

● The McCulloch-Pitts
neuron takes as input
Boolean values of xi,
either 0 or 1, and has a
Boolean output y (0:1)

● There is no learning
involved in McCulloch-
Pitts neuron model

● The McCulloch-Pitts
neuron can not input real
values (only 0 and 1)

Perceptron (1957)McCulloch-Pitts Neuron
(1943)

Modern Neuron (1986)

● Rosenblatt’s perceptron
can take continuous
values as inputs, but has
Boolean output

● The weights can be
adjusted over time (the
perceptron can “learn”)

● Single layer perceptrons
are only capable of
learning linearly separable
patterns (can not solve
XOR problem)

● This neuron can have a
non-linear activation
function and a bias

● The differentiability of the
activation function enables
application of the gradient
descent error back
propagation

● Still, the single layer
perceptron can not solve
the XOR problem

Benzschawel Scientific, LLC

7

Perceptrons and the XOR Problem
Minsky and Papert demonstrated that a one-layer perceptron could not solve the
XOR (exclusive OR) problem. This set the field back for over a decade.
● The perceptron is an algorithm for supervised learning of binary

classifiers
− A binary classifier is a function which can decide whether or not an input,

represented by a vector of numbers, belongs to some specific class
− A single layer perceptron at the

output node is a linear
combination of its inputs

− This means it can classify input-
output space only if you can
draw one linear line which will
clearly separate them

− Since the XOR function is not
linearly separable, it is
impossible for a single
hyperplane to separate it

● The solution to the problem is
the multi-layer perceptron

8
Benzschawel Scientific, LLC

The Multi-Layer Perceptron
A multilayer perceptron (MLP) is a class of feedforward artificial neural networks consists of, at
least, three layers of nodes: an input layer, a hidden layer and an output layer.

Benzschawel Scientific, LLC

● The solution to the XOR
problem is to add an
additional layer of units
without any direct access to
the outside world, known as a
hidden layer
− This architecture, while more

complex than the classic
perceptron network, is capable
of achieving non-linear
separation

Multi-Layer Perceptron

● The most noticeable difference from Rosenblatt’s model to the multi-
layer perceptron is the differentiability of the activation function
− Except for the input nodes, each node is a neuron that uses a nonlinear

activation function
− Recall the the Rosenblatt perceptron had a binary output activation function

● David Rumelhart and Geoffrey Hinton (1986) changed the history of
neural networks research by introducing the error backpropagation
algorithm

9

Neuron Activation Function

● The basic operation of an artificial
neuron involves summing its
weighted input signal and applying
an activation function
‒ In biologically inspired neural

networks, the activation function is
usually an abstraction representing
the rate of action potential firing in
the cell

‒ In its simplest form, this function is
binary—that is, either the neuron is
firing or not. This was true for the
perceptron.

In artificial neural networks, the activation function of a node defines the output
of that node, or "neuron," given an input or set of inputs.

Benzschawel Scientific, LLC

Activation Function

● Typically the same activation function is used for all neurons in a
particular layer of the network, although this is not required

● In most cases, a non-linear activation function is used
‒ Historically, the most common function used in multilayer perceptrons is a

sigmoidal activation function, but this has been replace by the ReLU function
‒ Two forms of the sigmoid function are commonly used: !(vi) = tanh(vi) whose

range is normalized from -1 to 1, and !(vi) = (1+ exp(-vi))-1 is vertically
translated to normalize from 0 to 1

The Sigmoid and Hyperbolic Tangent Functions

● The sigmoid function curve looks like an S-
shape (see figure). Its activation function is:

The most common activation functions in artificial neural networks are the
sigmoid and hyperbolic tangent activation functions.

Benzschawel Scientific, LLC

‒ It is especially useful for models where we have
to predict the probability as an output

● The main reason the sigmoid function is used
because it exists between 0 to 1

Sigmoid Function

Hyperbolic Tangent Function
● The hyperbolic tangent (tanh) function has become popular as it is less

likely to get “stuck” during training

● Its activation function is:

‒ Since the probability of anything exists only between the range of 0 and 1, the
sigmoid is the right choice

● The tanh function produced output in the range between -1 and 1
‒ The tanh has stronger gradients (derivatives) around zero than the

sigmoid which is preferable for optimization 11

x

ϕ(
x)

The Rectified Linear Unit (ReLU) Function
In recent years, the rectified linear unit (ReLU) function has become popular,
particularly for deep learning networks.

Benzschawel Scientific, LLC

● Demonstrated to enable better training of
deeper networks, compared to the widely-used
sigmoid and tanh functions

● As of 2018, ReLU is the most popular activation
function for deep neural networks

● The rectified linear unit (ReLU) is an activation
function defined as the positive part of its
argument:

● This activation function was introduced to a
dynamical network by Hahnloser et al. in 2000

ReLU Function

12

f(x
)

x

Error Backpropagation - Overview

Gradient Descent Method

Backpropagation is used to describe gradient descent optimization algorithm
which adjusts weights of neurons by calculating the gradient of the loss function.

Benzschawel Scientific, LLC

● Backpropagation is
shorthand for "the
backward propagation of
errors," since an error is
computed at the output and
distributed backwards
throughout the network’s
layers

● Backpropagation requires
the derivative of the loss
function with respect to the
network output to be known

● Then increase or decrease the value of each weight to produce the maximal
decrease in network error for that input

Typical error
surface for two
weights

● The derivative of this with respect to the network weights is

13

Error Backpropagation
Backpropagation in multi-layered feedforward networks, is made possible by using
the chain rule to iteratively compute gradients for each layer

Benzschawel Scientific, LLC

Error Backpropagation

The Learning Rate
● The problem for most models is how to set the learning rate
● The update expression for each weight is:

− j ranges from 0 to
the number of
weights

− θj is the jth weight in
a weight vector, and

− ⍺ is the learning rate

● We’re computing
dJ/dθj (the gradient
of weight θj) and
then taking a step of
size alpha in that
direction

14

Putting it All Together: The Neural Network
A popular form of neural network is the feed-forward network (below)
which is typically trained using backpropagation.

Feed Forward Neural Network

Benzschawel Scientific, LLCBenzschawel Scientific, LLC

Activation Function

Benzschawel Scientific, LLC

15

Early Applications

Machine Learning and Neural Networks in Finance

Types of Neural Networks
There are many types of neural networks. See examples of popular ones below.

Recurrent Network

Hopfield Associative NetworkConvolutional Neural Network

Deep Learning Network Deep Auto Encoders

Back-Propagation
Network

Long- Short-Term
Memory

17

What Can Neural Networks Do? The Linear Model

A fundamental problem in visual psychophysics is to construct a

geometry in which equal distances represent equal changes in sensation.

Trichromatic Theory of

Human Color Vision

MS L

S

McAdam’s
Ellipses
(1942)

● An early theory of color vision was based on the

idea of three types of photoreceptor whose

outputs combined linearly

− If that were the case, it should be possible to

construct a color diagram in which just discriminable

color differences would plot as circles of equal size

● MacAdam (1942) measured the loci of just-

noticeable differences in color for various

starting colors

− However, as shown in the diagram below, that was

not possible as those just noticeable differences

were not only elliptical, but differed in size as well

● An important problem in color science was to

create a geometry in which those ellipses plot as

circles of equal size

− This only became possible using a neural network

as described below

18Benzschawel Scientific, LLC

What Can Neural Networks Do?
An initial attempt to construct a more uniform color space was to put
nonlinear intensity-response functions on the photoreceptors.

Non-Linear Model of Color Vision

where R is the response, k is a constant
(usually ½ max) and n is proportional to the
slope of the curve

+

MS L

S
+ +

1976 CIE Uniform Chromaticity
Diagram

● In 1976, an attempt was made to construct a
more uniform color diagram by putting
saturating intensity-response functions on
the photoreceptors
− In fact, physiologists suggested that

photoreceptors had saturating responses of
stimulus intensity I of the form:

! " = !$%&
"'

"' +)

● Although the ellipses are more uniform that
in the earlier diagram, they are far from
circular and far from uniform in diameter
− This is in spite of the fact that the diagram was

called the “Uniform Chromaticity Diagram”

19Benzschawel Scientific, LLC

What Can Neural Networks Do?
A neural network imposed on the nonlinear photoreceptor responses fit
by backpropagation resulted in a uniform color space.

,

Detector

Zone Theory of Color Vision

ATDN Uniform Color Space

● Many lines of evidence suggested that
photoreceptor outputs do not just sum at
the post-receptor level, but also cancel
− In fact, the zone theory of color vision was

constructed based on evidence from other
studies of color vision

● We decided to see if our version of a back-
propagation method applied to the neural
network zone theory could solve the
uniform color diagram.
− There were no backpropagation algorithms

available at the time, so we devised our own
− We adjusted the weights in a direction that

would make the ellipses more circular and
uniform in size (akin to gradient descent)

− Those resulting loci of just-noticeable
differences are close to circles of similar size

Benzschawel Scientific, LLC

Neural Network for Credit Card Fraud Detection
The problem of fraudulent use of lost/stolen credit cards is a long-standing
problem for credit card issuers.

● Credit card fraud occurs when someone uses another’s credit card to
make unauthorized transactions
− It could be that the credit card had been lost or stolen and the holder begins

charging on the account

The Credit Card Fraud Problem

● Typically, in cases of credit card fraud, the perpetrator attempts to
make as many charges as possible in a short period of time
− Thus, one must act quickly in order to stem large losses

● In general, the credit card holder is not liable for fraudulent use of the
card, so the risk of fraud falls on the issuing bank
− Thus, banks have set up “fraud early warning” units to call customers to

verify if they have their cards and, if not, will close the account
− More recently, banks have become even more proactive, closing the card

accounts even before calling the customer

21
Benzschawel Scientific, LLC

Neural Network for Credit Card Fraud Detection
The job was to use a neural network to improve upon a model that sent
questionably fraudulent transaction to the early warning queue.

● Because of my background with neural network, Citibank asked me to
build a neural network to discriminate charges that result from
fraudulent activity from legitimate charges
− The problem was that a traditional statistician had tried to implement a

neural network and it didn’t work

● MODELING OBJECTIVE: Build a neural network to discriminate
fraudulent transactional activity from legitimate charges using
information from transactional records and account histories
− In particular, the objective was to build a model that would outperform the

existing regression model

● Fortunately, when I arrived, Citibank already had a dataset of
transactions resulting from fraudulent activities and non-fraud
transactions
− The dataset was prepared by my predecessor who failed to find improvement

of a neural network model over a logistic regression
− The input variable set (see next slide) was chosen to include items and

charge features that were generally associated with fraudulent activity

22Benzschawel Scientific, LLC

Neural Network for Credit Card Fraud Detection
Given a small sample (by today’s standards), we found an optimal net to consist of
our given 25 input variables, 7 nodes in the single hidden layer and an output.

Training Sample
Brand N(Fraud) N(Valid)

Classic 2,663 2,524
Preferred 1,054 1,055
AAdvantage 369 369
Total 4,086 3,948

0 BIAS
1 AMTOTB1
2 AMTOTB5
3 AMT1LN
4 UTIL
5 OTB
6 INACT2
7 INACT3
8 INACT9
9 CH5AD1
10 DELQ1
11 HG2DY1
12 LOGAM1
13 AMTCL1
14 HG2DY1
15 MOB1
16 HGHAM1
17 NCLMT
18 GGAMS1
19 HSCDY1
20 LOGMN1
21 HGISC1
22 HILMT
23 Classic
24 Preferred
25 Advantage

Variables● A list of 25 variables thought to be useful in classifying
fraud/non-fraud charges were selected along with a bias
− The variables are coded for security purposes, but some of

these include:
§ Number of charges in a given day
§ Amount of open-to-buy on the credit card
§ Number of purchases in “high risk” fraud categories
§ Has there been other recent activity on the card, and so forth
§ The type of credit card: Classic, Preferred, AAdvantage

The Sample

Holdout Sample
Brand N(Fraud) N(Valid)

Classic 2,664 2,503
Preferred 1,054 1,055
AAdvantage 182 185

Total 4,086 3,948

● The characteristics of the sample
for training and test (holdout)
appear at the right
− Both training and test samples had

about 4,000 fraud and non-fraud
cases (i.e., a 50/50 split both ways)

− More recent practice is about 66/33
split between training and test, but
still a 50/50 (fraud/non-fraud)
category split

Sample Statistics

Benzschawel Scientific, LLC

Building Neural Networks
Although neural networks can take many forms, there are certain general activities
that are commonly required to construct most networks.

Procedure for Constructing Back-Propagation Neural Networks

Benzschawel Scientific, LLC

1. Assemble Data Set (Most Difficult Part)
2. Define Variables and Scale Them for Input to Network
3. Extract Training, Cross-Validation, and Test Samples
4. Choose Initial Network Parameters: Type, Nodes, Levels, Activation

Functions
5. Train Network with Intermittent Testing on Cross-Validation Sample

until No Further Improvement
6. Test Network using Test Sample (Note Accuracy of Prediction)
7. Depending on Test Results, Change Network (by Adding a Node)

and Repeat Steps
8. When Finished, Run Software to Determine Importance (i.e.,

interpret) of Network Input Variables
9. Begin Programming Real-Time Implementation

24

Determining the Network Structure
There is no reliable algorithm for determining the number of hidden nodes in a
network, so the process is one of trial-and-error.

Number of Hidden Nodes

P
er

ce
nt

 C
or

re
ct

 (%
)

1 2 3 6 12

0.95

0.90

0.85

0.80

Number of Hidden Nodes versus
Probability Correct Classification

● Start with one neuron in the hidden layer
− Train the model to asymptote (described further in the next slide)
− Model accuracy is measured a maximum probability of correct classification on a

holdout sample (equal fraudulent and non-fraud)

● Now add another node and repeat procedure until performance asymptotes
− When performance no longer improves, back off one neuron

● We found that seven nodes was optimal for the fraud model

● Choose a number of hidden neurons
between 1 and the number of input
variables

● The number of hidden nodes should be
somewhere between the size of the input
and output layer, potentially the mean

● The number of hidden nodes shouldn't
exceed twice the number of input nodes,
as you are probably grossly overfitting

Some Rules of Thumb:

My Procedure:

25
Benzschawel Scientific, LLC

Training the Model to Asymptote
In addition to setting the number of nodes, each attempt at a model for a given
number of nodes will need a learning rate and number of training epochs.

Classification Error Reduction
versus Number of Epochs for 7

Hidden Node Network

Er
ro

r R
ed

uc
tio

n
(%

)

● For each of the models with different
numbers of hidden nodes, it was
necessary to specify the learning rate
and train for the number of epochs
− As for number of hidden layers and nodes,

there is no analytical method for specifying
the learning rate in backpropagation
§ A traditional default value for the learning rate

is 0.1 or 0.01, but this is only a starting point
§ One should try a range of values and settle on

the best one
§ Configuring the learning rate is challenging

and time consuming, but also critical

● Determining the number of epochs for training is an empirical process
− The figure shows how the errors are reduced as number of epochs increase

for the seven hidden-node network
− Performance on the test sample stabilized after about 30-50 epochs

● Note that while it is often preferable to do these tests on the holdout
sample, there is the risk of overfitting

26
Benzschawel Scientific, LLC

NNet Architecture for Credit Card Fraud Detection

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"

0.
0

–
0.

1

0.
1

–
0.

2

Hidden Layer Weights – oj,k

Output Layer

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"

0.
0

–
0.

1

0.
1

–
0.

2

0 1!"

#"

1

0 1

!

1

Benzschawel Scientific, LLCBenzschawel Scientific, LLCBenzschawel Scientific, LLC

Neural Network Model for Credit Card Transaction Fraud

O
utput

Layer
H

idden
Layer

Input
LayerXi

Vi

Input Layer Weights
Input Variables

Wi,j

Raw Inputs - Vi

O,j

Y

z
I(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

H(j)

-I(j)H(j)Sigmoid
Activation
Function

Sigmoid
Activation
Function

Input Variables: Vi – Raw Inputs
!"= # $" %&"' # $"

&() # $" %&"' # $"

*+=∑ !" ∗ .",+01
"23

4= 5
5678

Input Layer
H

idden Layer
O

utput Layer

8=∑ 9+ ∗ :+;
+23

9+=
5

567*+

z
K(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

Y

-K(j)Y

h2 h3 h6 h7h1 h5h4

Y

BIAS

A
M

TO
TB

1

0 1 2 3 4 5 6

A
M

TO
TB

5

A
M

T1LN

U
TIL

O
TB

IN
A

C
T2

IN
A

C
T5

IN
A

C
T9

AAdvantage

C
LA

SSIC

PREFERRED

H
ILM

T

C
H

5A
D

1

D
ELQ

1

7 8 9 10 11 25242322212019181716151412 13

H
D

2G
Y1

A
M

TC
L1

LO
G

A
M

1

H
G

3D
Y1

M
O

B
1

H
G

H
A

M
1

N
C

LM
T

H
G

ISC
1

LO
G

M
N

1

H
SC

D
Y1

G
G

A
M

S1

27
Benzschawel Scientific, LLC

Evaluating Classification Models: CAP Curves
The receiver operating characteristic (ROC) and Cumulative Accuracy Profiles (CAP) are
used to evaluate models’ abilities to classify events into different categories.

The analysis plots “hits”
(defaults called “defaults”)
versus either the population
percentile cut-offs for CAP
curves or “false alarms” (calling
non-defaulters “defaults”) for
ROCs

Distributions of Defaults
and Non-Defaults

To Plot a CAP Curve:
1. Rank all firms by scores from

both models (EDF and credit
rating)

2. For each decile in each ranked
population (by EDF or credit
rating) calculate the percentage
of the total number of defaulted
firms in or above that decile.

3. Plot that value for each model

Order Observations
by MODEL Score

28
Benzschawel Scientific, LLC

Evaluating Fraud Network Performance
One method for evaluating classification models are cumulative accuracy profiles
which plot correct classifications as a function of ranked population scores.

Computing Cumulative Accuracy Profiles

● To generate a cumulative accuracy
profile for a given model:

1. Generate a ranked list of the scores
from the model (i.e., likelihood of
fraud) for all transactions and note
whether or not each transaction was
fraudulent or not

2. Then, starting with the highest ranked
scores, go down the population and
calculate for each percentile the
cumulate percentage of fraudulent
transactions at or above that
percentile

3. Plot the results in a graph like that on
the right

● The graph shows “hit” rates (percent of fraudulent transactions falling above
a given ranked population percentile) for the neural network and regression
models
− The neural network model consistently outperforms the regression one

NNet Fraud
Regression Fraud
Non-Fraud

CAP Curves for Fraud Detection Models

29
Benzschawel Scientific, LLC

Neural Network for Credit Card Attrition
We built a neural network to predict which credit card customers would cancel
their accounts when assessed their annual fee. This was used for marketing.

● OVERALL GOAL: Develop quantitative tools for use in anti-attrition
marketing strategies (companion certificate for American Airlines)
− These tools will identify potential customer cancellations and suggest

optimal marketing strategies on an individual account basis
● A time-series database of account activity from the period 3/88 to 4/90

was extracted and used to build neural network models to predict fee-
based attrition

● As a first step, we built a model for identifying fee-based attrition using
variables currently computed for an attrition model sold by Fair Isaac
Company (FICO)
− This enabled us to evaluate the gain provided by network modeling tools
− It also made it easier to implement the neural network model and to

integrate its results into the targeting system used by marketing
● We demonstrated that a network, model provides significant

improvement over the FICO model
− We implemented that model for targeting potential attritions, and we

evaluated its effectiveness as well as that of anti-attrition strategies in the
following months

30
Benzschawel Scientific, LLC

Neural Network for Credit Card Attrition
The “optimal” neural network was found to have six nodes in a single hidden layer

Variable Names,
Minimum and

Maximum Values

● A total of 16 variables are input to the network along with a constant
BIAS of 1.0

● Each variable is scaled in term of its minimum and maximum

Model for Credit Card Attrition

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"

0.
0

–
0.

1

0.
1

–
0.

2

Hidden Layer Weights – oj,k

Output Layer

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"

0.
0

–
0.

1

0.
1

–
0.

2

0 1!"

#"

1

0 1

!

1

Benzschawel Scientific, LLCBenzschawel Scientific, LLCBenzschawel Scientific, LLC

Neural Network Model for Credit Card Transaction Fraud

O
utput

Layer
H

idden
Layer

Input
LayerXi

Vi

Input Layer Weights
Input Variables

Wi,j

Raw Inputs - Vi

O,j

Y

z
I(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

H(j)

-I(j)H(j)Sigmoid
Activation
Function

Sigmoid
Activation
Function

Input Variables: Vi – Raw Inputs
!"= # $" %&"' # $"

&() # $" %&"' # $"

*+=∑ !" ∗ .",+01
"23

4= 5
5678

Input Layer
H

idden Layer
O

utput Layer

8=∑ 9+ ∗ :+;
+23

9+=
5

567*+

z
K(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

Y

-K(j)Y

h2 h3 h6 h7h1 h5h4

Y

BIAS

A
M

TO
TB

1

0 1 2 3 4 5 6

A
M

TO
TB

5

A
M

T1LN

U
TIL

O
TB

IN
A

C
T2

IN
A

C
T5

IN
A

C
T9

AAdvantage

C
LA

SSIC

PREFERRED

H
ILM

T

C
H

5A
D

1

D
ELQ

1
7 8 9 10 11 25242322212019181716151412 13

H
D

2G
Y1

A
M

TC
L1

LO
G

A
M

1

H
G

3D
Y1

M
O

B
1

H
G

H
A

M
1

N
C

LM
T

H
G

ISC
1

LO
G

M
N

1

H
SC

D
Y1

G
G

A
M

S1

31
Benzschawel Scientific, LLC

Interpreting Neural Network Decisions
Neural Networks have often been criticized as being “black boxes”, but
in fact, there are several methods for reliably determining neural network
decisions.

1. List of Variables
2. Univariate Relationships
3. Variable Exclusion Method
4. Garson’s Method
5. Analysis of Derivatives

List of Variables

Va
ria

bl
e

N
am

es

● The simplest and most straightforward, but least
informative method for imputing network decision
making is to consider the list of input variables

● A list of variables is useful in that one can at least see
the full spectrum of information available to the
network

● Of course, the usefulness of this method is limited as
there is no measure of the relative importance of each
input variable in the network

Benzschawel Scientific, LLC

Interpreting Neural Network Decisions (cont.)
Univariate Relationships

● A more informative analysis of individual variables can be
gained by performing regression tests between each input
variable and the dependent variable in question
− For example, assume that we have 20 input variables thought to be

related to the item that we wish to predict
− Then, for each candidate input variable, we build a logistic

regression model by selecting values of ai and βi for each variable
that is most highly correlated with the target variable

● We can then rank the variables with respect to their relative
univariate predictive power
− Presumably, the variable with the greatest univariate predictive

power is the most important, and so forth

● One limitation of this method is that relationships among input
variables are not captured and multicolinearity is not assessed
− Still, the method reveals just as much as revealed by simple

regression models
33

Benzschawel Scientific, LLC

Interpreting Neural Network Decisions (cont.)
Variable Exclusion
● A direct way to determine a variable’s importance is to first

build a predictive model with a given set of variables and,
once constructed, remove each variable in turn and retrain
the model without that given variable
− The variable exclusion models need not be of the same structure

as the original model; they should be the best models one can
build with and without that variable

● It is hard to see how the variable exclusion method does not
capture the importance of each individual variable
− However, this method does not capture the importance of bi-

variate or multi-variate interactions in multi-layer models
− Like the univariate relationship method, the variable exclusion

method reveals at least as much about variable contributions as is
revealed by simple regression models

− Furthermore, variable exclusion provides information about multi-
collinearity

34
Benzschawel Scientific, LLC

Interpreting Neural Network Decisions (cont.)
Garson’s Method

● A quick and effective way to determine univariate contributions to
multi-layered networks and decision trees was proposed by Garson
(1991)

● Essentially, Garson’s method is to compute for each normalized (e.g.,
0 to 1 scaled, Gaussian distributed, etc.) input variable the sum of the
absolute values of its weights throughout the network or tree

● That is, Garson’s score for a given input variable, i, is calculated as

n = number of input variables
k = number of hidden nodes

w(i,j) = weight of the ith variable into the jth hidden node
o(j) = weight of the jth hidden node into the output node

where

! " = $%&
∑()*+ , ", (∗ /(()

∑")*2 ∑()*+ , ", (∗ /(()

35Benzschawel Scientific, LLC

Interpreting Neural Network Decisions (cont.)
Analysis of Derivatives

Benzschawel Scientific, LLC

● Currently, the best way I know of to reveal the decision-
making properties of a complex system is to perturb slightly
its inputs both individually and in combinations with all other
inputs to the desired degree of complexity

● Assuming that one has trained a version of the network or
decision tree to a given level of accuracy, one version of the
par procedure is as follows:
1. Present a single training input vector to model and measure the

output of network
− The resulting value is the benchmark for that vector

2. For each of the n variables in that input vector
− Adjust the value of that variable up by a given amount (say 5% for

convenience) and measure the change in output; do the same for a
small perturbation downward

− Compute the slope of best fit line through the three outputs (up, down
and benchmark) as a function of value of the input variable to
approximate change in output with respect to input (i.e., the compute
the derivative)

36

Interpreting Neural Network Decisions (cont.)
Analysis of Derivatives

3. Repeat steps 1-3 for all cases in the sample used for training the
model and calculate the summary statistics of the resulting
changes for each individual variable
− Be careful: it may be that a single variable have only positive or

negative effects relative to the benchmark. This is why examination of
the distribution is critical

● Proceed to analysis of bi-variate and multi-variate
contributions
4. Beginning again with a single n-valued input vector from the

training set, select two variables for joint perturbation.
− As in Step 1, present a input vector to the model, and let the resulting

output value be the benchmark for that vector
− Then perturb by 5% each of the two variables simultaneously, up

together, both down, and each pair in opposite directions, up-down,
down-up, respectively

− As before present the entire vector to the model, with the resulting
value be designated as the benchmark for that vector

37
Benzschawel Scientific, LLC

Interpreting Neural Network Decisions (cont.)
Partial Derivative Analysis

− Compute the slope of best fit line through the three outputs (up, down
and benchmark) as a function of value of the input variable to
approximate change in output with respect to input (i.e., the compute
the derivative)

5. Repeat Step 4 for all cases in the sample used for training the
model and calculate the summary statistics of the resulting
changes for each set of variables
− Be careful: it may be that a single variable have only positive or

negative effects relative to the benchmark. This is why examination of
the distribution is critical

6. Repeat Steps 4 and 5, but this time perturbing three variables at a
time and calculating its nine associated derivatives, for each trio
and compute their averages and standard deviations (for each of
the nine cases for each trio.

38
Benzschawel Scientific, LLC

We trained a neural network to select the mutual fund that had the best chance of
being profitable over the next month. We then analyzed the variable contributions.

Neural Network for Ranking Mutual Funds 3/3/92

Analysis of Variable Contributions● We built a model to predict one
month returns on mutual funds
− The model had 18 inputs, 4

hidden nodes and 1 output
− 500K learning trials (~100

Epochs)
− Binary dependent variable (0:1)
− N(Train) = 2,175; N(Test) = 2,253

● Variable importance was
assessed using partial
derivative analysis and
Garson’s method
− There is reasonable

consistency between the two
methods

− This is particularly true at the extremes where largest positive and
negative contributing variables are the same

39
Benzschawel Scientific, LLC

40

Neural Network for US Treasury Yield Changes
We developed a model to predict short-term movements in US Treasury yields

and evaluated the model’s performance in simulated and actual trading.

● Our objective was to predict the near-term directional change of the

U.S. Treasury bonds

− The model was trained to predict changes in 30-year US Treasury bond yields

− We chose as inputs to the model a set of 26 variables consisting of raw

market bond price series, equity indices, foreign exchange rates and

technical stochastic indicators

− In addition, the ratios of short-term changes in variables and other statistics

were computed on some of these quantities

− We were able to get data on all these quantities since 2Q84, so the first market

moves that we predicted were for 2Q92, trained on the data between 1984 and

1992

We were granted a patent on the model in 2009: T. Benzschawel, C. Dzeng, and G. Berman,

Method and System for Artificial Neural Networks to Predict Price Movements in Financial

Markets, US Patent: 7529703, May 5, 2009

● The neural network model is really a series of quarterly models with a

new set of network weights developed for each subsequent quarter

over the 11-year sample period (walk-forward method)

− Each successive period incorporated an additional three months of data

− Thus, although we began predictions for 1992 with eight years of trailing data

for training, by 2000, we had doubled the training set by including all the

data from 1992 to 2000

Benzschawel Scientific, LLC

The US Treasury Bond Model
One feature of development of the US Treasury Bond Model was that we only trained
the on largest 1/3 up and 1/3 down moves in US Treasury yields.

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"
0.

0
–

0.
1

0.
1

–
0.

2

Hidden Layer Weights – oj,k

Output Layer

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"
0.

0
–

0.
1

0.
1

–
0.

2

0 1!"

#"

1

0 1

!

1

Benzschawel Scientific, LLCBenzschawel Scientific, LLCBenzschawel Scientific, LLC

Neural Network Model for Credit Card Transaction Fraud

O
utput

Layer
H

idden
Layer

Input
LayerXi

Vi

Input Layer Weights
Input Variables

Wi,j

Raw Inputs - Vi

O,j

Y

z
I(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

H(j)

-I(j)H(j)Sigmoid
Activation
Function

Sigmoid
Activation
Function

Input Variables: Vi – Raw Inputs
!"= # $" %&"' # $"

&() # $" %&"' # $"

*+=∑ !" ∗ .",+01
"23

4= 5
5678

Input Layer
H

idden Layer
O

utput Layer

8=∑ 9+ ∗ :+;
+23

9+=
5

567*+

z
K(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

Y

-K(j)Y

h2 h3 h6 h7h1 h5h4

Y

BIAS

A
M

TO
TB

1

0 1 2 3 4 5 6

A
M

TO
TB

5

A
M

T1LN

U
TIL

O
TB

IN
A

C
T2

IN
A

C
T5

IN
A

C
T9

AAdvantage

C
LA

SSIC

PREFERRED

H
ILM

T

C
H

5A
D

1

D
ELQ

1

7 8 9 10 11 25242322212019181716151412 13

H
D

2G
Y1

A
M

TC
L1

LO
G

A
M

1

H
G

3D
Y1

M
O

B
1

H
G

H
A

M
1

N
C

LM
T

H
G

ISC
1

LO
G

M
N

1

H
SC

D
Y1

G
G

A
M

S1

● The network consists of:
− Input layer (represents the

daily market values used
for prediction)

− Hidden layer (sums
weighted signals from
each of the inputs prior to a
nonlinear transformation)

− Output layer (sums the
weighted outputs of the
hidden layer and produces
the response). Asset

TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"
0.

0
–

0.
1

0.
1

–
0.

2

Hidden Layer Weights – oj,k

Output Layer

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"

0.
0

–
0.

1

0.
1

–
0.

2

0 1!"

#"

1

0 1

!

1

Benzschawel Scientific, LLCBenzschawel Scientific, LLCBenzschawel Scientific, LLC

Neural Network Model for Credit Card Transaction Fraud

O
utput

Layer
H

idden
Layer

Input
LayerXi

Vi

Input Layer Weights
Input Variables

Wi,j

Raw Inputs - Vi

O,j

Y

z
I(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

H(j)

-I(j)H(j)Sigmoid
Activation
Function

Sigmoid
Activation
Function

Input Variables: Vi – Raw Inputs
!"= # $" %&"' # $"

&() # $" %&"' # $"

*+=∑ !" ∗ .",+01
"23

4= 5
5678

Input Layer
H

idden Layer
O

utput Layer

8=∑ 9+ ∗ :+;
+23

9+=
5

567*+

z
K(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

Y

-K(j)Y

h2 h3 h6 h7h1 h5h4

Y

BIAS

A
M

TO
TB

1

0 1 2 3 4 5 6

A
M

TO
TB

5

A
M

T1LN

U
TIL

O
TB

IN
A

C
T2

IN
A

C
T5

IN
A

C
T9

AAdvantage

C
LA

SSIC

PREFERRED

H
ILM

T

C
H

5A
D

1

D
ELQ

1

7 8 9 10 11 25242322212019181716151412 13

H
D

2G
Y1

A
M

TC
L1

LO
G

A
M

1

H
G

3D
Y1

M
O

B
1

H
G

H
A

M
1

N
C

LM
T

H
G

ISC
1

LO
G

M
N

1

H
SC

D
Y1

G
G

A
M

S1

Network for US Treasury Bond Yields

Input Layer
H

idden Layer
O

utput Layer

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"
0.

0
–

0.
1

0.
1

–
0.

2

Hidden Layer Weights – oj,k

Output Layer

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"
0.

0
–

0.
1

0.
1

–
0.

2

0 1!"

#"

1

0 1

!

1

Benzschawel Scientific, LLCBenzschawel Scientific, LLCBenzschawel Scientific, LLC

Neural Network Model for Credit Card Transaction Fraud

O
utput

Layer
H

idden
Layer

Input
LayerXi

Vi

Input Layer Weights
Input Variables

Wi,j

Raw Inputs - Vi

O,j

Y

z
I(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

H(j)

-I(j)H(j)Sigmoid
Activation
Function

Sigmoid
Activation
Function

Input Variables: Vi – Raw Inputs
!"= # $" %&"' # $"

&() # $" %&"' # $"

*+=∑ !" ∗ .",+01
"23

4= 5
5678

Input Layer
H

idden Layer
O

utput Layer

8=∑ 9+ ∗ :+;
+23

9+=
5

567*+

z
K(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

Y

-K(j)Y

h2 h3 h6 h7h1 h5h4

Y

BIAS

A
M

TO
TB

1

0 1 2 3 4 5 6

A
M

TO
TB

5

A
M

T1LN

U
TIL

O
TB

IN
A

C
T2

IN
A

C
T5

IN
A

C
T9

AAdvantage

C
LA

SSIC

PREFERRED

H
ILM

T

C
H

5A
D

1

D
ELQ

1

7 8 9 10 11 25242322212019181716151412 13

H
D

2G
Y1

A
M

TC
L1

LO
G

A
M

1

H
G

3D
Y1

M
O

B
1

H
G

H
A

M
1

N
C

LM
T

H
G

ISC
1

LO
G

M
N

1

H
SC

D
Y1

G
G

A
M

S1

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"

0.
0

–
0.

1

0.
1

–
0.

2

Hidden Layer Weights – oj,k

Output Layer

Asset
TypeBiasXi Seniority

Raw Inputs - vi.

0"

Output Layer

!" =$ %&'(&,"
**

"+,

Weights - !",$

Weights - !",$

Scaled Inputs - !"

0.
0

–
0.

1

0.
1

–
0.

2

0 1!"

#"

1

0 1

!

1

Benzschawel Scientific, LLCBenzschawel Scientific, LLCBenzschawel Scientific, LLC

Neural Network Model for Credit Card Transaction Fraud

O
utput

Layer
H

idden
Layer

Input
LayerXi

Vi

Input Layer Weights
Input Variables

Wi,j

Raw Inputs - Vi

O,j

Y

z
I(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

H(j)

-I(j)H(j)Sigmoid
Activation
Function

Sigmoid
Activation
Function

Input Variables: Vi – Raw Inputs
!"= # $" %&"' # $"

&() # $" %&"' # $"

*+=∑ !" ∗ .",+01
"23

4= 5
5678

Input Layer
H

idden Layer
O

utput Layer

8=∑ 9+ ∗ :+;
+23

9+=
5

567*+

z
K(j)

-10 -5 0 5 10

1.0

0.8

0.6
0.4

0.2

0

Y

-K(j)Y

h2 h3 h6 h7h1 h5h4

Y

BIAS

A
M

TO
TB

1

0 1 2 3 4 5 6

A
M

TO
TB

5

A
M

T1LN

U
TIL

O
TB

IN
A

C
T2

IN
A

C
T5

IN
A

C
T9

AAdvantage

C
LA

SSIC

PREFERRED

H
ILM

T

C
H

5A
D

1

D
ELQ

1

7 8 9 10 11 25242322212019181716151412 13

H
D

2G
Y1

A
M

TC
L1

LO
G

A
M

1

H
G

3D
Y1

M
O

B
1

H
G

H
A

M
1

N
C

LM
T

H
G

ISC
1

LO
G

M
N

1

H
SC

D
Y1

G
G

A
M

S1

Y

● During training, values of
variables for a given day
are presented to the
network
− The difference between the

network output and its
‘desired’ output (i.e., the
actual market move) is
backpropagated The actual networks had 27

inputs and 7 hidden nodes.

Benzschawel Scientific, LLC
42

− Backpropagation consists of adjusting slightly each of the weights in the
network in proportion to its ability to reduce the output error.

− The entire training set is presented repeatedly in random order until network
performance stabilizes

− The technique is called the gradient descent method of error backpropagation.

The US Treasury Bond Model (cont.)

● We used this method to set the weights of the network using as training
data daily technical indicators and the resulting future price change over
a minimum sample period of eight years prior to the test dates

The Neural Network Voting Model● Our actual trading model
consisted of not just one,
but 13 of the structures
similar (but not identical) to
that shown in the previous
slide
− The idea behind having

multiple models is to avoid
the “local minima” problem

● The weights for each of the 13 networks were generated using the same
structure of nodes, learning data number of trials, etc., but the initial
random weights assigned to the connections for each network were
generated using a different random seed

13 Separate
Networks

The US Treasury Bond Model (cont.)
● Although each of the 13 models produces a continuous output score, that

output goes through a series of transformations that ultimately result in
the generation of one of three signals: BUY(B), SELL (S), or NEUTRAL (N)

Benzschawel Scientific, LLC 43

To my knowledge, this was the first usage of a voting model. This has now become
commonplace.

● At the close of a given trading day, input variable values are fed into the
13 networks and the signal is calculated
− If 7 or more networks signal B (output > 0.66), a BUY is initiated, if 7 or more

networks signal S (output < 0.33), a SELL, and if neither gets at least 7, the signal is
N, NEUTRAL

− We call a trade of one-unit the equivalent of $100,000 face of US T-Bonds

● If the signal is B, we add one unit to our position, if it is S, we subtract one
unit, and if the signal is N, we do nothing that day

● However, if any trades were done on the 12th-previous business day, that
trade is unwound at the current day’s close

● On any given day, the maximum number of units that one can trade is two:
one new position, and an unwinding of a previous one

● Similarly on any given day, the maximum size of our position could be
long or short 12 units

Daily Trading Procedure

Benzschawel Scientific, LLC
44

T-Bond Network Performance
We evaluated the model’s performance in out-of-sample simulated trading from
2Q92 to 4Q99, and in actual market trading beginning in 4Q99.

● We conducted historical
backtesting using this
method, while recalculating
the model parameters each
quarter with additional data
from the prior one

Historical Back-Testing Actual
Trading

92Q2 93Q2 94Q2 95Q2 96Q2 97Q2 98Q2 99Q2 00Q2 01Q2

Q
ua

rte
rly

 P
/L

 ($
00

0s
)

Quarter

150

100

50

0

-50

-100

Performance of T-Bond Model

● The figure presents the results
of our backtesting and trading
− The solid line in is the zero-
− profit axis, the heavy dashes show the average monthly P/L over the sample

period, and the light dashes denote +/-1 standard deviation in monthly P/L
− Of the 37 quarters tested, 22 are profitable, 13 show losses and 2 have no P/L
− Profitable quarters have a mean P/L of $38,000, whereas losing quarters have an

average P/L of -$25,000
− The largest quarterly gain over the 1992-2001 period is $111,000 and the largest

quarterly loss is $78,000

● Variability in P/L is sometimes high, but has decreased in later years
− This may be due to the fact that each quarter we are adding cases to the training

set such that the predictions for 2001 are generated from networks that have
nearly twice the learning cases as those for 1992

Benzschawel Scientific, LLC
45

C
um

ul
at

iv
e

P/
L

($
00

0s
)

500

400

300

200

100

0
Apr-94 Dec-94 Sep-95 May-96 Feb-97 Oct-97 Jul-98 Mar-99 Dec-99 Aug-00

T-Bond Network Performance (cont.)

Cumulative P/L from T-Bond Model● The figure shows cumulative P/L

from 2Q94 through September

9, 2000

− The model generated $0 P/L in the

first sample quarter (2Q92) and

-$7,000 in 3Q92 (not shown in the

cumulative plot),"

− The model has not had negative

cumulative P/L since then

− From April 1994 through

− September 2000, it had a cumulative P/L of $413,604, with a mean of $256 per

business day and a standard deviation of $5,151.

− This gives an annualized Sharpe Ratio of 0.79 for the period.

● The historical probability of correct decision (i.e., Market goes up I BUY and

Market goes down | SELL) for each unit-trade is 54% and this has been

replicated in actual trading from 3Q99 through June 2001

Predicting Market Moves from Customer
Trading Patterns

Machine Learning and Neural Networks in Finance

Predicting Bond Price Changes from Client Trade Flow
We used data from client trades, bond indicative data, and client type to
predict moves in bonds prices.

● We used three types of information to predict bond price
movements:
⎼ Trade information: Quantity and Direction
⎼ Bond Indicative Data: ID, Industry, OAS, Investment-Grade and High Yield

§ We collected both pre-trade and post-trade OAS spreads. The key observation
time points as 1, 5, 10, 20 days before and after the trade and the trade date

⎼ Client Information: ID and Type
§ The groups are Insurers, Corporates, Banks, Asset managers, Hedge funds,

Public sector, Pension funds, Other.

Benzschawel Scientific, LLC

Time Frame for Model Development and Testing
To remove the market impact from the data, all trades were analyzed
relative to percent changes in the US Investment-grade bond index.

● The time frame is from Jan 2014 to Aug 2015, 20 months in total

● There are 109,890 trades, 1,908 clients and 6,100 bonds

Data Preparation

Raw
Data

After
Data

Preparation

Period: 1/14 to 8/15
Trades: 109,890
Clients: 1,908
Bonds: 6,100

Period: 1/14 to 8/15
Trades: 88,394
Clients: 1,406
Bonds: 5,105

● Data cleaning issues:
⎼ For newly issued bonds

which did not have 20 days
of past data we just set them
to NA and excluded them
from training

⎼ We removed clients with less
than 50 trades over the
observation period

⎼ We removed bond OAS
outliers with more than +/-
2.7! from the mean

● After data cleansing, we have
88,394 trades, 1406 clients and 5105 bonds for further study

Benzschawel Scientific, LLC

Data
Preparation

Model Selection
We tested several methods in order to accurately predict corporate
bond price moves over 1, 2, 5, 10 and 20 days.

Taxonomy of Models Tested● K-Means:
⎼ Advantages: fast,

efficient, easy to
implement

⎼ Disadvantages: not
robust, lack consistency

● Client Performance
Metric Designing:
⎼ Advantages: intuitive,

easy to implement
⎼ Disadvantages: not

stable

● Markov Chain:
⎼ Advantages: time

series, efficient

● Extreme Gradient Boosting Tree:
⎼ Advantages: high flexibility, regularized to control over fitting
⎼ Disadvantages: Hard to tune the parameters

⎼ Disadvantages: curse of dimension

Benzschawel Scientific, LLC

Extreme Gradient Boosting Tree
The extreme gradient boosting tree yields the best results and will be the focus
of the report.

● The Extreme Gradient Boosting Tree is a widely used supervised
learning method which can be applied to regression, classification
and ranking problems

Single Tree

Quantity

Single Tree

Bond Industry

Single Tree

Correctness

Single Tree

Bad Trade

Single Tree

N Trade

Single Tree

Bad Trade

Single Tree

N Trade

Single Tree

Client Type

Single Tree

Bond Industry

Single Tree

Bond Rating

Single Tree

N Trade

Single TreeSingle Tree

Good Trade

Single Tree

N Trade Good Trade

− Gradient boosting trees
produce a predictions in
the form of an ensemble
of weak prediction
decision trees

GBT Loss Function
Single Tree

Client Type

Single Tree

Bond Industry

Single Tree

Quantity

Single Tree

N Trade

Single Tree

Bad Trade

Single Tree

Good Trade

Single Tree

N Trade

Benzschawel Scientific, LLC

Boosting
Gradient boosting is a machine learning technique for regression and
classification problems, which produces a prediction model in the form of an
ensemble of weak prediction models.
● Most boosting algorithms consist of iteratively learning weak

classifiers and adding them to a final strong classifier
− They are typically weighted in relation to the weak learners' accuracy.
− After a weak learner is added, the data weights are readjusted,
− Misclassified input data gain a higher weight and examples that are

classified correctly lose weight
− Thus, future weak learners focus more on the examples that previous

weak learners misclassified.
● The main variation between many boosting algorithms is their

method of weighting training data points and hypotheses
− AdaBoost is very popular and the most significant historically as it was

the first algorithm that could adapt to the weak learners
§ AdaBoost (with decision trees as the weak learners) is often referred to as the

best out-of-the-box classifier
§ When used with decision tree learning, information gathered at each stage of

the AdaBoost algorithm about the relative 'hardness' of each training sample is
fed into the tree growing algorithm such that later trees tend to focus on
harder-to-classify examples.

51
Benzschawel Scientific, LLC

Training the Model
Gradient boosting is a machine learning technique for regression and classification
problems, which produces a prediction model in the form of an ensemble of models

● Walk-Forward Method
− In order to incorporate changes in the corporate bond market yet have

enough information to train the model, we used a rolling training period of 3
months

− For each training period, we used the following 1 month of data to test the
model performance

− We then moved the training and test samples one month in time and
repeated the training and test procedure

● Variables
− For each modelling period, we input the

client type, bond industry, bond grade,
past return as independent variables

− The dependent variable is the post trade
P/L calculated using the following
formula:

− Then, we assign the P/L to one of three
classes (-1, 0 ,+1) as shown on the right

Bottom
25%
(-1)

Top
25%
(+1)

Middle
50%
(0)

Transformed Post-Trade P/L

52
Benzschawel Scientific, LLC

Training the Model (cont.)
● Data Segmentation

− To improve the predictive power of the model, trades were segmented
into buys and sells

− This is because we noticed that buy and sell trades have fundamental
difference in trade behavior

− As we have interest in both short-term prediction and long-term
prediction, we also set different lags (1, 2, 5, 10, 20 days) of P/L as
dependent variables

● Portfolio Construction and Evaluation
− In our test set, we construct the portfolio in the following three steps:

1. Based on the model prediction, if the result is -1 we do the
oppose of the trade direction. If the result is 0, we abandon the
trade. If the result is 1, we follow the trade

2. Normalize our resulting trade P/L to ensure we use same capital
for model and benchmark

3. Compare our constructed trade portfolio with the benchmark
portfolio

53
Benzschawel Scientific, LLC

Modeling Paradigm Summary
● Training Paradigm

− We trained the model on a 3-month rolling window and tested 1-month out
− We divided our signal range into three regions for executing trades

Ø Training 3 months and
Testing 1 month

Ø Features: client type/bond
industry/bond grade/past
return

Ø Signal Strength: Quantile
Ø Classify by signal strength:

Post Trade P/L -> +1 / 0 / -1

● Generating Predictions
− We examined client buy and sell trades for holding times of 1, 5, 10 and 20

days

54
Benzschawel Scientific, LLC

When the client traded, the model could either go along with the client,
against the client or stay out of the trade.

Portfolio Construction
We constructed portfolios for each client based on the model predictions and
compared that with the clients’ performance.

Benzschawel Scientific, LLC

Enlarge the first
three branches

XGBoost Tree Demonstration
The final prediction in the form of -1, 0 and 1 will be calculated as the sum of
score given by all individual trees.

Given the full tree structure
(below) is complicated, partial
tree graph is presented on the
right

A trade with quantity
less than 0.4 million
dollars will be assigned
to the first ending note
with score 0.14

A rated bond trade with quantity
between 0.4 million and 1 million
dollars and past 1 day P/L less than
-10% will be assigned to the second
ending node with score -0.01

Benzschawel Scientific, LLC

XGBoost Tree Model Feature Analysis
The Boosting Tree Model provides a decision path predicting each trade’s
profitability, and gives some insights about features of good and bad trades.

● The pattern of variable
importance is similar for buy
and sell trades

● The most important feature in
predicting returns from buy
and sell orders is recent P/L
− This is true even for 10-day

prior P/L
− Thus, the model is mainly a

momentum model

● Besides past performance,
order quantity, corporate bond
rating, and investors’ type
(e.g., bank, asset management
and hedge fund) also play
important roles in this model.

Variable Importance for Buy Trades

Variable Importance for Sell Trades

1 Day Return
Before Trade
5 Day Return
Before Trade

10 Day Return
Before Trade

Investor Type

Investment
Grade

Net USD
Quantity

Importance Measure

1 Day Return
Before Trade
5 Day Return
Before Trade

10 Day Return
Before Trade

Investor Type

Investment
Grade

Net USD
Quantity

Importance Measure
Benzschawel Scientific, LLC

XGBoost Model Accuracy
We measure model accuracy by percent correct over various time periods (1, 5,
10 and 20 days).

● One measure of accuracy is the
percentage of correct predictions
(buy – bond up; sell – bond down)

● The figures plot probability correct as
a function of the signal strength
− Signal strength percentile means that

all signals at or stronger than that
percentile are included in the analysis

● Performance is above 50% for signals
greater than the 30% quantile
− This means that for 30%-40% of the

signals, model performance is at
chance

● Accuracy decreases with decreasing
signal strength for all lags
− in order to archive a high accuracy

score such as 90%, a criterion of 5% is
required

P(Correct) by Percentile CriterionProbability Correct

Signal Strength Percentile
5 10 15 20 25 30

Pe
rc

en
t A

cc
ur

at
e

Pr
ed

ic
tio

ns

90
80
70
60
50

Lag = 1 Day

Lag = 5 Day

Signal Strength Percentile
5 10 15 20 25 30Pe

rc
en

t A
cc

ur
at

e
Pr

ed
ic

tio
ns

90
80
70
60
50

Analysis of Trade Portfolios – Buy Trades
On average, the model outperforms our clients for bond buy trades. This is true
over all tenors.

Lag = 1 Day
5

4

3

2

1

0

-1

-2

-3

Test Month

C
um

ulative P/L ($)M
on

th
ly

 P
/L

 ($
)

2.0

1.5

1.0

0.5

0

-0.5

-1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1.5

1.0

0.5

0

-0.5

-1.0

Test Month

C
um

ulative P/L ($)M
on

th
ly

 P
/L

 ($
)

4

2

0

-2

-4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Lag = 5 Day

2.0

1.0

0

--1.0

-2.0

Test Month

C
um

ulative P/L ($)M
on

th
ly

 P
/L

 ($
)

4

2

0

-2

-4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Lag = 10 Day

3

2

1

0

-1

-2

Test Month

C
um

ulative P/L ($)

M
on

th
ly

 P
/L

 ($
)

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Lag = 20 Day

Benzschawel Scientific, LLC

Analysis of Trade Portfolios – Sell Trades
On average, the model performs similar to clients for bond sell trades. This is
true over all tenors.

4

3

2

1

0

-1

Test Month

C
um

ulative P/L ($)

M
on

th
ly

 P
/L

 ($
)

2.0

1.5

1.0

0.5

0

-0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Lag = 1 Day

2.0

1.5

1.0

0.5

0

-0.5

C
um

ulative P/L ($)M
on

th
ly

 P
/L

 ($
)

6

5

4

3

2

1

0

-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Lag = 10 Day 3.0

2.5

2.0

1.5

1.0

0.5

0

-0.5

-1.0

Test Month

C
um

ulative P/L ($)M
on

th
ly

 P
/L

 ($
)

1.0

0.8

0.6

0.4

0.2

0

-0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Lag = 20 Day

Benzschawel Scientific, LLC

Analysis of Trade Portfolios – Summary
● For both buy and sell trades, the model produces steadily growing

cumulative returns as represented by the blue lines in the Figures
● For buy orders, the model outperforms the benchmark portfolio on all

time frames (1, 5, 10 and 20 days)
− Credit may partially give to the fact that clients with buy orders did not

perform very well
− During the monitoring period, the accumulated return for client portfolio is

almost stays below zero

● Although the model performs better for client “buy” trades, it does
not do much better for “sell” trades
− The client portfolio performance on sell orders is much better than for buy

orders
− The model may not always beat the clients (e.g., 5 and 10 day)
− Still, the volatility of returns from the model is lower and this is reflected in

better information ratios

61
Benzschawel Scientific, LLC

Analysis of Trade Portfolios – Information Ratios
● For buys and sells at most tenors results are significant

− Results for 5% high signal strength are often not significant owing to the
small number of cases in that bucket

4
3
2
1
0In

fo
rm

at
io

n
R

at
io 5 Day

10 Day3.5
3.0
2.5
2.0
1.5
1.0
0.5

0In
fo

rm
at

io
n

R
at

io

20 Day3.0
2.5
2.0
1.5
1.0
0.5

0In
fo

rm
at

io
n

R
at

io

62
Benzschawel Scientific, LLC

Project Summary
● In this project, we trained XGBoost decision trees to differentiate

profitable buy and sell trades over time periods of 1, 5, 10 and 20 day
holding periods
− We chose to analyze client trades as we were able to obtain the exact prices

at which trades were executed
− We trained the XGBoost model on rolling 3-month trades, with each model

predicting bond spread moves relative to the market over the next month
− We used data from client trades, bond indicative data, and client type to

predict moves in bonds prices

● Applying XGBoost model and using client trade flow, the resulting
portfolios are able significantly more profitable than imputed client
portfolios and generates more stable and increasing cumulative
returns

I thank Wenyu Chen, Xiaoyi Li, Jie Sheng, Zhuolu Xu for their important contributions
to this project.

63
Benzschawel Scientific, LLC

Deep Learning Models

Machine Learning and Neural Networks in Finance

What is Deep Learning?
Deep learning is just very big neural networks on a lot more data, requiring
bigger computers – J. Brownlee (2016)

● Leaders and experts in the field have various ideas of what deep learning is
and we consider some of these

● Some common aspects of their thoughts on deep learning are:
— Deep Learning Involves Large Neural Networks
— Deep Learning is Hierarchical Feature Learning
— Why Call it “Deep Learning”?; Why Not Just

Call it “Artificial Neural Networks”?

Deep Learning is Large Neural Networks

Brownlee, J. What is Deep Learning? DEEP LEARNING, August 16, 2016

● Andrew Ng has described deep learning
as:
— “ . . . for most flavors of the old generations

of learning algorithms … performance will
plateau. … deep learning … is the first
class of algorithms … that is scalable. …
performance just keeps getting better as
you feed them more data

Deep Learning
Algorithms

Older Learning
Algorithms

Pe
rf

or
m

an
ce

Amount of Data

Deep Learning

How do data science techniques scale
with the amount of data?

65
Benzschawel Scientific, LLC

Deep Learning Neural Networks
Deep learning is just very big neural networks on a lot more data, requiring
bigger computers – J. Brownlee (2016)

● A deep neural network is a neural network with more than two layers
— Deep neural networks use sophisticated mathematical modeling to

process data in complex ways
— It is the added complexity of deep learning neural networks that makes

optimization and regularization particularly important
— Most definitions include multiple layers of non-linear transformations

66
Benzschawel Scientific, LLC

Examples of Deep Learning Neural Networks
There are many types of deep learning neural networks. The most successful
have taken place in the domain of image processing and speech recognition.

Recurrent Neural Network

Image Classification Network

Classic Multi-Layer Network

Convolutional & Recurrent Network

Bi-Directional Recurrent Network

67

What is Deep Learning?
Why Did Backpropagation (i.e. “Deep Learning”) Not Take off in the
1990s?

● Hinton says that people drew the wrong conclusions about why
deep learning failed. The real reasons were
1. Our labelled datasets were thousands of times too small
2. Our computers were millions of times to slow
3. We initialized weights in a stupid way
4. We used the wrong type of non-linearity in the activation function

● Early “deep learning” approaches published by Hinton and
collaborators focused on layerwise training and unsupervised
methods like autoencoders

● Modern state-of-the-art deep learning is focused on training deep
(many layered) neural network models using the backpropagation
algorithm
— Multilayer Perceptron Networks.
— Convolutional Neural Networks
— Long Short-Term Memory Recurrent Neural Networks

An autoencoder learns to compress data from the input layer into a short code, and then
uncompress that code into something that closely matches the original data. 68

Machine Learning Models of Corporate Bond
Relative Value

Machine Learning and Neural Networks in Finance

Corporate Bond Relative Value

OVERALL GOAL: Outperform the cut-and-rotate method
at beating corporate bond benchmarks
! In 2004, we developed a strategy that consistently outperforms global

corporate bond indexes and have been testing it out-of-sample since then

! The strategy takes as input bonds' model-based expected default
probabilities and recovery values in default along with credit spreads and
applies rules for portfolio construction based on those inputs

! We wanted to use additional explanatory variables in a non-linear model
to more accurately determine fair spread and anticipate spread
change/convergence
! Use neural networks to model non-linear relationship

! Using those network-based relative value numbers, test the performance
of the new relative value numbers in our cut-and-rotate strategy
! Predict 1 month change in OAS directly

The objective of this project is to improve upon our current method for beating corporate
bond indexes by adding variables and applying machine learning techniques.

70
Benzschawel Scientific, LLC

Bond Pricing – Yield Spreads to Treasuries

2

3

4

5

6

7

0 5 10 15 20 25 30 35

Years to Maturity

Yi
eld

 (%
)

US Treasury Yields

Corporate Bond Yields

Credit Spread

Yi
el

d
(%

)

Years to Maturity

● To isolate the price of credit risk, corporate
bonds are typically quoted on a yield
spread-to-Treasury basis
⏤ The credit risk of a bond is the yield spread

over the yield of a Treasury bond of similar
maturity

⏤ To compute the present value of a bond with
maturity, T:

Yield Curves for US Treasuries and
for Single-A Corporate Bonds

The yield spread to Treasuries is the market standard for quoting and evaluating the
relative riskiness among different credits and/or maturities.

Yield Spread by Agency Rating
T

T

T

t
t

t r

c

r

c
PV 2

12

1 5.0

2
1

1002

2
1

2

÷
ø
ö

ç
è
æ +

+
+

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

÷
ø
ö

ç
è
æ +

= å
-

=
for US Treasuries:

T
T

T

t
t

t sr

c

sr

c
PV 2

12

1 5.0

2
1

1002

2
1

2

÷
ø
ö

ç
è
æ +
+

+
+

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

÷
ø
ö

ç
è
æ +
+

= å
-

=
for Corporates:

Credit
Spread

Yield spreads to Treasuries
increase with maturity and
decreasing credit quality.

Where PV is the price of bond with coupons (ct), rt
is the term structure of US Treasury spot yields at
0.5 year intervals, and s is the yield spread of the
credit curve to US Treasuries. Spread is often
Basis Points where 1bp is 1/100 of 1%

Calculating Bond Relative Value - Default Risk
The success of our current "cut-and-rotate" strategy depends on having accurate estimates
of bonds' expected probabilities of default and recovery values. We consider first our model
for predicting bond defaults; Citi's Hybrid Probability of Default (HPD) model.

● We use the Merton model framework because idiosyncratic risk
in the equity market appears to lead the bond market
⎼ The equity market is larger, has more strategist coverage and is more

liquid
⎼ It is cheapest to put on a view of credit in the equity market

8

Hybrid Probability of Default Model● We use the hybrid
probability of default (HPD)
model to estimate firms'
probabilities of default
⎼ The model is called a "hybrid"

because it combines a
"Merton-type" structural model
with statistical variables on
firms' size, profitability and
cash flow

⎼ This model is the best we know
of commercial and industrial
firms

72Benzschawel Scientific, LLC

Calculating Bond Relative Value - Recovery Value
Expected losses on corporate bonds depend on both likelihood of default and recovery value
in default. We currently use a decision tree model of recovery value in default.

• The decision-tree model embeds
known determinants of recovery
value in default. These are:
─ Credit cycle, seniority, industry

sector, credit quality, and geography

The tree begins by assigning a recovery rate of
40% for all securities. If one has no other
information, the tree will output 40%
The first decision point is the adjustment for
credit cycle dependency. The next step in the
decision tree concerns seniority in the capital
structure

Following the hierarchy shown in the figure,
we assign the firm's seniority to one of the
following six categories

The next adjustment in the model is for credit
quality just prior to default. If nothing is input at
this stage, the analysis advances to the sector
adjustment stage

The recovery value is then adjusted for
industry sector

The final adjustment is for geographical region
as different regions have different bankruptcy
regimes, legal procedures and precedents

Model for Recovery Value in Default

73
Benzschawel Scientific, LLC

Bond Relative Value – Recovery Value

● The decision-tree model
embeds known determinants of
recovery value in default
⎼ Credit cycle, seniority, industry

sector, credit quality and geography

Expected losses on corporate bonds depend on both the likelihood of default and
recovery value in default. We use a decision-tree model of recovery value in default.

Model for Recovery Value in Default

● The recovery-adjusted spread puts all
bonds on a 40% recovery value basis
and is calculated as:

Credit Spreads vs Log Default
Probability and Log Duration

The pink circles are the 10% riskiest
bonds, the gray are 10% riches and
dark read are 10% cheapest

● We calculate bonds' relative
values by plotting their recovery-
adjusted spreads to Treasuries
versus the logarithms of their one-
year default probabilities and
durations
⎼ Relative value is z-score vertical

distance from the fair value line (the
red line in the figure)

We calculate bonds' relative values as the amount of credit spread for their default
probability, recovery value, and duration relative to the average of all bonds.

!"#$%&= − (
)*+,-"./ ∗ ln 1 − (456 789:;<	∗<>9;?@AB

(4+5#.C5+D	+,-5

Corporate Bond Relative Value

log $%&'() = *)+ *+ ∗ -./ 01% + *2 ∗ -./ 134% + 5%

● Thus, our model for yield spreads to
Treasuries for bond i is:

● The relative value measure adjusts for effects of duration and
recovery value on spreads 74

We decided to test if we could predict one-month changes in option-adjusted
credit spreads.

Predicting 1-Month OAS Changes

● We used our relative value measure and other variables as input to
regression and neural network models to predict one-month changes
in bond spreads to US Treasuries

Input Variables for 1-Month OAS Change Models

! In addition to bonds’ relative values, we added the variables:
⎼ OAS Momentum (1M an 3M)
⎼ Relative Value Momentum (1M and 3M)
⎼ Spread-Times-Duration Momentum (1M and 3M)
⎼ Sector Relative Value Momentum (1M and 3M)

75Benzschawel Scientific, LLC

Because several of the variables are normalized with respect to changes in the
market, they are defined explicitly below.

Input Variable Definitions

● OAS Momentum N-Month:

● Relative Value Momentum N-Month:

● Spread Duration Momentum N-Month:

● Sector Relative Value Momentum N-Month:

76Benzschawel Scientific, LLC

We chose a 20-bin output layer, scaled in units of 5% of the ranked population of
one-month spread changes and applied the Softmax function to normalize the
distribution.

Network Architecture – The Output Layer

Output Layer (Relative Value Percentiles)● We rank all the
relative value
numbers in the
training sample
and convert them
to percentiles as
the dependent

● Then for each training case output, we apply the Softmax function
which takes an un-normalized vector of density across the 20 bins and
normalizes it into a probability distribution

● The standard (unit) Softmax function is given by the standard
exponential function on each coordinate, divided by the sum of the
exponential function applied to each coordinate
— The sum of the exponential function acts as a normalizing constant, so

the output coordinates sum to 1:

77Benzschawel Scientific, LLC

variable for each bond

We chose the categorical cross entropy measure as the error function and
used it as a criterion for choosing the network architecture.

Choosing the Loss Function and Network Architecture

● We used categorical cross entropy as the error function

● The double sum is over the observations i, whose number is N, and
the categories c, whose number is C

● The term is the indicator function of the ith observation
belonging to the cth category. The is the model
probability for the ith observation to belong to the cth category.

● The network outputs a vector of C probabilities, each giving the
probability that the network input should be classified as belonging
to the respective category

● We used the cross entropy error function as a measure for deciding
on the structure of the network (see next slide)

78Benzschawel Scientific, LLC

We trained both a regression model and neural network model using the same
input variables using the same walk-forward procedure used previously.

Neural Network and Regression Model

● The regression model was an ordinary least squares regression
● The overall approach to the neural network architecture was similar to that

for the relative value network. That is,
— We used a standard Softmax function with 20 OAS bins as the output layer

of the network
— We used categorical cross entropy as the error function

● As before, to determine the
optimal neural network
architecture, we began with a
single node in a single hidden
layer, and add nodes and layers
until performance fails to
improve

Er
ro

rM
ag

ni
tu

de

Number of Nodes

Categorical Cross Entropy Error vs
Number of Nodes in Each Layer

— For example, the chart on the right
shows that a two-layer network is
preferable to a single layer

— We decided on a network with 2
hidden layers with 7 and 9 nodes,
respectively

We kept the same
network structure for
all the years tested.

79Benzschawel Scientific, LLC

We used a walk-forward procedure to train each network, each year adding the
data from the previous year.

Training the Network – The Walk Forward Procedure

● We used a ”walk forward”
procedure to train a series of
annual neural network models
— For example, the chart on the

right shows that the first
network model was trained
only on the data from 2005

— That model was used to
generate relative value
numbers for 2006

● This process continued until the final model in 2015 which trained on
data from 2005 through 2015 was used to generate predictions for 2016

2005 to Year X

05 06 07 08 09 10 11 12 13 14 15

Illustration of Walk-Forward Network
Training Procedure

● Then data from 2006 were
added to the training
sample of 2005 and used to
train the model to test on
data from 2007

— Thus, each successive annual model was trained on an increasing amount
of data

80Benzschawel Scientific, LLC

Corporate Bond 1 Month OAS Change Network

B
ia

s
-

O
A

S
M

om
en

tu
m

 1
M

 -

R
el

Va
l M

om
en

tu
m

 1
M

 -

R
el

at
iv

e
Va

lu
e

-

ST
D

 M
om

en
tu

m
 1

M
 -

Se
ct

or
 R

el
Va

l M
om

en
tu

m
 1

M
 -

O
A

S
M

om
en

tu
m

 3
M

 -

R
el

Va
l M

om
en

tu
m

 3
M

 -

ST
D

 M
om

en
tu

m
 3

M
 -

Se
ct

or
 R

el
Va

l M
om

en
tu

m
 1

M
 -

0%
-5
%

5%
-1
0%

10
%
-1
5%

15
%
-2
0%

25
%
-3
0%

30
%
-3
5%

35
%
-4
0%

50
%
-5
5%

95
%
-1
00
%

90
%
-9
5%

85
%
-9
0%

80
%
-8
5%

75
%
-8
0%

55
%
-6
0%

60
%
-6
5%

70
%
-7
5%

20
%
-2
5%

40
%
-4
5%

45
%
-5
0%

65
%
-7
0%

Input Layer
Hidden
Layer 1

Input Variables are
Scaled in

Percentiles From 0
to 1

ReLU
Function

Hidden
Layer 2

ReLU
Function

Softmax Function

Output Layer
OAS Spread Change Percentile

The model was
trained for 5,000
Epochs with
Learning Batch Size
of 10,000

81
Benzschawel Scientific, LLC

One Month OAS Change Network Performance
Both the regression and neural net models of one-month OAS changes were
designed to select bonds on relative OAS change only.

Annual Returns and Summary Statistics from Relative Value and 1-Month OAS Models

Average Annual
Year Spread Change Cut Rotate CnR Cut Rotate CnR Cut Rotate CnR Cut Rotate CnR
2006 95 -5 4 30 38 -4 21 14 -5 -19 -22 -5 -16 -40
2007 196 111 -4 -15 -17 13 -18 4 11 -4 13 11 7 28
2008 676 477 56 -10 8 134 -92 62 134 180 291 134 63 252
2009 212 -403 -71 614 553 -188 386 147 -190 18 -126 -190 135 -39
2010 171 -18 -6 129 122 -4 79 73 -3 98 91 -3 88 96
2011 237 65 18 30 46 21 -2 20 19 76 96 19 83 124
2012 152 -85 5 121 137 -6 103 98 -8 94 93 -8 92 94
2013 131 -29 -11 27 20 -16 47 31 -15 83 62 -15 67 39
2014 126 12 7 72 93 15 81 104 15 57 71 15 73 82
2015 165 46 47 -15 39 63 -6 64 66 56 129 66 78 127
2016 136 -42 -64 116 35 -82 55 -27 -80 117 35 -80 107 22

Sum 2297 129 -19 1099 1074 -54 654 590 -56 756 733 -56 777 785
Mean 209 12 -2 100 98 -5 59 54 -5 69 67 -5 71 71

Std Dev 153 195 37 171 151 77 116 49 77 54 98 77 41 80
Ratio 0.0 0.6 0.6 -0.1 0.5 1.1 -0.1 1.3 0.7 -0.1 1.7 0.9

OAS
OLS Neural Network

1 Month Change in OAS
Benchmark

Relative Value Models
Neural Network

● The 1-Month OAS change models predicted spreads directly, so did
not go through the cut-and-rotate paradigm.

● The OLS and neural net models had information ratios of 1.3 and 1.7,
respectively, mainly by reducing the volatility of returns

⎼ These are far superior to the 0.6 and 1.1 information ratios of the
benchmark and neural network cut-and-rotate strategies

82

We also analyzed models’ performance using monthly returns by relative value
decile.

1-Month OAS Change Model Performance (cont.)

-20

0

20

40

60

80

100

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

C
um

ul
at

iv
e

U
nc

om
po

un
de

d
R

et
ur

n
(%

)

1M Change in OAS - OLS Model

Decile
Annual
Mean

Annual
StdDev

Info
Ratio

1 8.93 6.33 1.41
2 8.54 6.13 1.39
3 7.86 6.57 1.20
4 7.42 6.53 1.14
5 7.07 6.80 1.04

Index 6.23 5.73 1.09
6 5.91 6.27 0.94
7 5.62 5.49 1.02
8 5.67 5.37 1.06
9 3.30 5.49 0.60
10 1.95 5.34 0.36

1M Change - OLS Model OLS Model 10

9
8
7
6
5
4
3

2

1

-20

0

20

40

60

80

100

120

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

C
um

ul
at

iv
e

U
nc

om
po

un
de

d
R

et
ur

n
(%

)

1M Change in OAS - Neural Net Model

10

9
8
7
6
5
4

3
2
1

Decile
Annual
Mean

Annual
StdDev

Info
Ratio

1 10.09 6.05 1.67
2 8.57 6.25 1.37
3 7.84 6.84 1.14
4 7.52 6.42 1.17
5 6.82 6.03 1.13

Idx 6.23 5.73 1.09
6 5.94 5.56 1.07
7 5.43 5.60 0.97
8 4.11 5.84 0.70
9 3.48 5.61 0.62
10 2.47 5.31 0.47

1M Change - Neural Network
Neural Net Model● We analyzed

monthly returns
by decile for the
OLS and neural
network 1-month
change models

● Both models
perform well at
ranking absolute
and risk adjusted
returns by decile

● Returns from
decile 10 versus
decile 1 are 50bp
per annum
greater for the
neural network
model

Decile
Annual
Mean

Annual
StdDev

Info
Ratio

1 8.93 6.33 1.41
2 8.54 6.13 1.39
3 7.86 6.57 1.20
4 7.42 6.53 1.14
5 7.07 6.80 1.04

Index 6.23 5.73 1.09
6 5.91 6.27 0.94
7 5.62 5.49 1.02
8 5.67 5.37 1.06
9 3.30 5.49 0.60
10 1.95 5.34 0.36

1M Change - OLS Model

10
9
8
7
6

5
4
3
2
1

Decile
Annual
Mean

Annual
StdDev

Info
Ratio

1 10.09 6.05 1.67
2 8.57 6.25 1.37
3 7.84 6.84 1.14
4 7.52 6.42 1.17
5 6.82 6.03 1.13

Index 6.23 5.73 1.09
6 5.94 5.56 1.07
7 5.43 5.60 0.97
8 4.11 5.84 0.70
9 3.48 5.61 0.62
10 2.47 5.31 0.47

1M Change - Neural Network

10
9
8
7
6

5
4
3
2
1

83
Benzschawel Scientific, LLC

-4

-2

0

2

4

6

8

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

M
o

n
th

ly
 R

e
tu

rn
 (L

o
n

g
 -

S
h

o
rt

)
%

160

C
u

m
u

la
ti

v
e

C
o

m
p

o
u

n
de

d
 R

et
u

rn

Profitable Months = 74%
Average Monthly Retrun = 58bp
Annual Sharpe Ratio -= 1.43

OLS Model
-4

-2

0

2

4

6

8

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

M
o

n
th

ly
 R

e
tu

r
n

 (
L

o
n

g
 -

S
h

o
r
t)

%

Profitable Months = 77%

Average Monthly Retrun = 63bp

Annual Sharpe Ratio -= 1.68

-10

0

10

20

30

40

50

60

70

80

90

1 13 25 37 49 61 73 85 97 109 121 133

C
u

m
u

la
t
iv

e
 U

n
c

o
m

p
o

u
n

d
e

d

R
e

t
u

r
n

 (
%

)

Profitable Years = 10 of 11

Maximum Drawdown = -2.4% in Mar 2007

Neural Net Model

1-Month OAS Change Model Performance (cont.)
We analyzed profitability from each model of going long the bonds in decile 10
and short the bonds in decile 1

● Both OLS and Neural Net models perform well in decile 10 versus decile 1
long/short trades
⎼ The OLS model has 74% profitable months with an average return of 56bp

(6.72% per annum) and an information ratio of 1.4
⎼ The neural network was profitable 77% of months with an average return of

63bp (7.56% per annum) and an information ratio of 1.7

Monthly Returns and Summary Statistics from 1-Month OAS Models

● The Neural Network model performs best

Benzschawel Scientific, LLC 84

4.73

-10

0

10

20

30

40

50

60

70

80

90

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

C
u

m
u

la
ti

v
e

U
n

co
m

p
o

un
de

d

R
e

tu
rn

 (
%

)

Profitable Years = 10 of 11
Maximum Drawdown = -1.9% in Feb 2007

8

S
h

o
rt

)

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

-10

0

10

20

30

40

50

60

70

80

90

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

C
u

m
u

la
ti

v
e

U
n

co
m

p
o

un
de

d

R
e

tu
rn

 (%
)

Profitable Years = 10 of 11
Maximum Drawdown = -2.4% in Mar 2007

1-Month OAS Change Model Performance (cont.)
We analyzed cumulative profitability from each model of going long the bonds in

decile 10 and short the bonds in decile 1

● We analyzed cumulative uncompounded returns from the OLS and Neural

Network Models

● Models perform similarly as regards profitable years and drawdowns, but

the Neural Network had higher overall returns

⎼ Both are profitable 10 of 11 years and drawdowns are -1.9% and -2.4%, but the

neural network has higher absolute returns

● Both models have steady returns after the credit crisis of 2008-2009

⎼ Recall the because of the “walk-forward” procedure, the samples for the

models increase as time goes on

Monthly Returns and Summary Statistics from 1-Month OAS Models

OLS Model Neural Net Model

Benzschawel Scientific, LLC
85

Analysis of Variable Contributions – 1M OAS Change
For the 1-month OAS change network, there is greater dispersion of variable
importance rankings among analysis methods.

Importance of Variables in OAS Change
Neural Network

● Relative value
momentum is
important in variable
exclusion and
univariate analyses

⎼ However, they are
relatively
unimportant using
Garson’s method

⎼ Garson’s method
ranks relative value
and 1-month OAS
momentum as most
important

● Sector relative value momentum at 1M and 3M is important in
variable exclusion and Garson’s method, but have only a weak
univariate relationship to OAS changes

86
Benzschawel Scientific, LLC

Variable Contributions - Derivative Analysis
The analysis of derivatives confirms the importance of relative value momentum
in the neural network model, but relative value and STD momentum are important

● As for the exclusion
and univariate
methods, the derivative
method assigns
greatest importance to
1-month relative value
momentum

⎼ 3-Month relative
value momentum is
also important

● Consistent with

Summary Statistics from Derivative Analysis

● Average values of sector relative value momentum and OAS
momentum indicate little directional bias in the effects of those
variables.

 Input Variable Mean
Std

Deviation Skew Kurtosis
OASMom_1M 0.03 0.05 0.71 3.58
OASMom_3M 0.00 0.05 -0.75 3.91
SecRelValMom_1M 0.02 0.02 1.27 3.52
SecRelValMom_3M 0.02 0.05 0.32 7.59
RelVal -0.09 0.07 -1.58 5.24
STD Mom_1M -0.07 0.15 -0.72 3.49
STD Mom_3M 0.01 0.12 1.86 6.87
RelValMom_3M -0.06 0.04 -1.71 5.26
RelValMom_1M -0.09 0.06 -1.69 5.22

Garson’s method, relative value is tied with relative value momentum
as the third most important variable

87
Benzschawel Scientific, LLC

Variable Contributions – Distribution of Derivatives
The derivative method provides information regarding the strength of each
variable, but the direction and consistency of its contribution.

Distribution of Derivatives for Input Variables

Pr
ob

ab
ili

ty
 D

en
sit

y (
Su

m
 to

 1
00

)

Value of Derivative

● The distributions of
derivatives show that
variables whose mean
derivatives are close to
zero can have large
influences on network
responses

⎼ For example, OAS
momentum (1 and 3
month) derivatives
have broad
influences, but in
both directions

● Increases in relative
value and relative value
momentum consistently
lead the model to
predict tighter spreads

88Benzschawel Scientific, LLC

Predicting Market Moves from News
Headlines

Machine Learning and Neural Networks in Finance

Project Objectives
The objective of this project was to generate sentiment scores from news
headlines and use those scores to predict credit spread moves.

● In this project, we focused on using Natural Language
Processing (NLP) techniques to build trading strategies for
1-day horizons for the credit market using news headlines.

● Using data scraped from multiple financial sources, we
employ machine learning approaches of varying
complexities.

● We find that pure sentiment prediction does not require
models of very high complexity, but the link between
sentiments and predictability of returns is not straight-
forward.

● We also find that approaches using the latest advances in
NLP are better suited to predict future returns in credit
indices, by using news headlines directly as inputs,
instead of news headline sentiments

Introduction and Background
The objective of this project was to generate sentiment scores from news
headlines and use those scores to predict credit spread moves.

● Natural language processing (NLP) is a branch of artificial
intelligence that is being used more and more for both
business and financial applications
− Financial institutions, on both the buy- and sell-sides, are adopting the

technology for tasks like robo-advisories, credit checks, employee
surveillance, and investment strategies

− Financial literature on NLP has focused on metrics related to corporate
governance, competitive dynamics, management quality, etc. that would
be useful for longer-term investment signals in equity markets

Natural Language Processing (NLP)

● Traditional approaches have generally focused on
conventional NLP methods like bag of words, TF-IDF scores to
rank firms based on the frequency of occurrences of pre-
defined “relevant” words in the firms’ 10-Ks, analyst reports,
earnings call transcripts or news
− There has also been progress in parsing through high-frequency

information sources like news, employing the information gleaned in
high frequency trading

Bag of Words
● Bag of Words (BoW) is an algorithm that counts how many

times a word appears in a document
− Those word counts allow us to compare documents and gauge their

similarities for applications like search and document classification
● BoW lists words paired with their word counts per document

− In the table where the words and documents that effectively become
vectors are stored, each row is a word, each column is a document, and
each cell is a word count

● Before they’re fed to the neural network, each vector of wordcounts
is normalized such that all elements of the vector add up to one
− Thus, the frequency of each word is effectively converted to represent the

probabilities of those words’ occurrence in the document
− Probabilities that surpass certain levels will activate nodes in the network

and influence the document’s classification

− Each of the documents in the corpus
is represented by columns of equal
length

− Those are wordcount vectors, an
output stripped of context

Term Frequency-Inverse Document Frequency
(TF-IDF)

● With TF-IDF, words are given weight – TF-IDF measures relevance,
not frequency
− Wordcounts are replaced with TF-IDF scores across the whole dataset

● TF-IDF measures the number of times that words appear in a given
document (that’s “term frequency”).

− Those marker words are then fed to the neural net as features in order to
determine the topic covered by the document that contains them

Term-frequency-inverse document frequency (TF-IDF) is another way to
judge the topic of an article by the words it contains.

− Because words such as “and” or “the” appear frequently in all documents,
those must be discounted

− That’s the inverse-document frequency part. The more documents a word
appears in, the less valuable that word is as a signal to differentiate any
given document

− That’s intended to leave only the frequent and distinctive words as markers.
Each word’s TF-IDF relevance is a normalized data format that also adds up
to one.

Introduction and Background (cont.)
One common problem is that old approaches (like bag of words) lead to
highly sparse predictor matrices.

● A standard way of dealing with the sparse matrix problem is creating
vector representations for each word, called the “word2vec”
algorithm (Mikolov, et al., 2013)
− Word2vec is a step towards transfer learning - for instance, Google has

trained a freely-downloadable word2vec model outputting word
representations using over a 100 billion words from a Google news dataset

● There are some issues with using off-the-shelf word2vec models
− One problem is that the data on which the model is trained is generic - it

encompasses non-financial data, leading to meanings which might not
make much sense in our context

− For instance, the closest words to “bull” in the Google word2vec model
would be other animals like “cow” and “dog”, whereas we want to see
similar words like “bear”, “rally” and so on

● Li and Shah (2017) used finance-relevant text data from micro-
blogging sites (StockTwits, Twitter) to train their word2vec models
− They created sentiment-specific embeddings so as to be able to predict

text sentiment of any given text for any firm

Introduction and Background (cont.)
● Moore and Rayson (2017) used news headlines to train a

word2vec model*
− Moore et al. try to predict sentiments in headlines concluding that

deep learning approaches like Bidirectional Long-Short Term Models
(BiLSTM) beat simpler approaches like Support vector Regressions
(SVR) by 4-6%

● Schumaker and Chen (2007) take a linguistic approach to
predicting intraday stock movements based on financial
news
− They extract specific phrases from all documents split by sector,

leading to a less sparse predictor set than a simple Bag of Words
approach

− They conclude that firm- / sector-specific training for their models
leads to better performance

* They have kindly open-sourced their model which we use for one of our approaches

● Recent work by Velay and Daniel (2018) used top 25 news
headlines to predict the end-of-day value of the DJIA index
− They tried both statistical and deep learning models, but find that

deep learning algorithms had difficulty figuring out the link between
the headlines and the index trend

Introduction and Background – Our Approach

● Most previous approaches approaches have focused either
on pure sentiment prediction, or on its effects in liquid
markets like equities, with little attention being given to
credit markets.

● This study explores different approaches to predicting
corporate bond price moves over a 1-day horizon, using a
self-sourced dataset of news headlines

● We focus on both single-name credits as well as the
investment grade and high yield credit index ETFs
− These different levels of aggregations carry their own benefits and

challenges.
− One obvious benefit for single-name credits is the better one-to-one

correspondence between a news item and the firm
− However, there are fewer headlines for individual firms than the

market and trading single-name credits involves relatively high
transaction costs

In this project, we incorporate lessons from the above cited literature
(among others) as we attempt to use sentiment data to predict corporate
bond prices.

The Data
Headline data were collected from major finance news sources such as Wall
Street Journal, Yahoo Finance, Washington Post and PR News

● Data were collected
using the Wayback
machine
− The Wayback Machine

was launched in 2001 to
address the problem of
website content
vanishing whenever it
gets changed or shut
down

− The service enables
users to see archived
versions of web pages
across time, which the
archive calls a "three
dimensional index".

− Kahle and Gilliat created
the Wayback machine
hoping to archive the
entire Internet and
provide "universal
access to all knowledge."

Data - Sources
In addition to the data from the Wayback machine, we were able to find
sentiment scores from the Thomson-Reuters 2 Sigma data.

● Wayback Machine Data (Crawl
Data)
− The raw html files contain the date,

headline, content, and link for each
news item

− There is no sentiment data
associated with the news items

− Although there are headlines, there
is typically very little additional news

Data Source Properties

● 2 Sigma Data
− The participants were given access

to organized and comprehensive finance data provided by 2 sigma (from
2007-01-01 to 2018-07-31, total 9 million rows).

− This dataset contains information at both article level and asset level and
includes article details, sentiment and other commentary

− The sentiment class in the news data indicates the predominant sentiment
class for this news item regarding to the specific asset

− Sentiment for each item is divided into three classes: Negative, Neural and
Positive, then selected the class with the highest probability

● The aggregated level data was obtained by crawling the web
● Duplicate headlines were dropped from the dataset
● Over half of the data comes from the Wall Street Journal

(WSJ)

We extracted a total of over 500,000 news headlines from the Wayback
machine beginning in 2000.

Wayback Data by News Source

Number

Company Coverage
In addition to the data from the Wayback machine, we were able to find
sentiment scores from the Thomson-Reuters 2 Sigma data.

● We chose two corporate bond index: LQD (investment-grade)
and HYG (high yield) as our analysis targets
− The charts below show the number of news stories for each company

covered in the 2-sigma data

Netflix Inc
Spirit Communications

Tesla
First Chrysler Autos

Continental Resources
Tenet Healthcare

Community Health Systems
Sirius XM Radio

Western Digital Corp
International Game Tech

HCA Holdings
United Rentals

Scientific Games
Clear Channel Holdings

First Data Corp
Zayo Colocation

0

20
0

40
0

60
0

80
0

10
00

12
00

Investment
Grade

High
Yield

Predicting Returns from Individual Firms
In our first set of studies we summed the sentiment scores from the 2 sigma
data on individual firms and used it to go long or short their bonds.

● Trading strategy for Individual firms from sentiment data
− For each target company, aggregate all the news before 4 pm on each

trading day and sum their daily sentiment scores
− Go long their bonds if the sum of daily scores is positive; go short if

negative; and do nothing if zero
− Trade with that day’s closing price and close position on the next trading

day’s closing price
− Test on different

time lag of the
signals

Daily Sentiment Scores for Amazon

● An example of the
summed daily
sentiment scores
for Amazon
appears on the
right

AMZN

D
ai

ly
 S

en
tim

en
t S

co
re 10

0

-10

-20

9/2012 10/2012 11/2012 12/2012 1/2012

77 Trading Days

which is the change is spread times the duration of the
bond.

Sentiment Strategy for Individual Firms
We calculate the daily P/L of our long/short trades based on sentiment data
by looking at the change in spread on the bond over the period in question.

● For a long position in a given bond, we calculate the daily
P/L as:

● For a short position in a given bond, the P/L is the negative
of the long position P/L above

● To eliminate the effect of changes in market spreads, we
hedge the single name companies with the LQD index

● That is, we take the P/L of a single firm and subtract the
appropriate P&L of the index for each trading day

● Use the adjusted duration and spread change of LQD index
to get the daily P/L of the firm in question

103

Some Examples of Results for Individual Firms
We provide some examples of cumulative uncompounded returns from
bonds of individual firms based on sentiment long/short trades (ignore
transactions costs)

Trading Days

C
um

ul
at

e
P/

L
(b

p)

0 200 400 600 800 1000

CVS800
600
400
200

0
-200
-400

● The performance differences
across different time lags vary,
which may indicate the limited
power of the strategy

Firm Level Sentiment Prediction
We will not have access to 2 Sigma data going forward, we decided to build a
model to mimic the 2 Sigma sentiment scores and use the to predict market
moves.

● We will not have access to the 2 Sigma data going forward
● Need to “back-calculate” firm-level sentiment model from

given information so as to be useful in trading
● Disadvantages of neural nets for sentiment prediction

− Too complex
− ~100k parameters
− Computationally difficult to train

● Past approaches have shown benefits of simpler models
like Naive Bayes in sentiment classification, after
appropriate text clean-up

● We decided to build a boosted tree model trained on the 2
Sigma data to generate sentiment scores

● We then would use those sentiment scores to try to predict
market moves for individual firms.

● For training, we used only those headlines with a

minimum of a 70% relevance score for a given firm as per

2 Sigma

● Split data into 80% training and 20% test (non-random

sampling)

● To process the news headlines we do the following:
– Convert to lower case and remove numbers
– Remove short words (with length < 3)
– Remove stop words - the, and, of, ...
– Remove words not recognized as part of an “English dictionary.”
– Lemmatize words
– Choose words that are relatively common across all news headlines for a

specific firm

● Run a boosted trees model (bagged trees)

● Check sentiment prediction accuracy, number of trades

annually based on different probability thresholds

Firm Level Sentiment Prediction - Methodology
We trained an XGBoost tree model to predict sentiments scores from the 9

million Thompson-Reuters 2 Sigma news items.

Input to XGBoost Model
The inputs to the XGBoost model are "term count" matrices for each firm: each
row is a news headline, and each value is the number of times a word occurred.

Sample of Input to XGBoost Model

● The input data is a "term count" matrix
− Each row corresponds to a news headline
− Each value in the matrix corresponds to the number of times a certain word

occurred in the sentence
§ For instance, in the 2nd sentence, the word "update" occurred once

● The matrix has 291 columns for this firm, where each word
corresponds to a unique word. The list of words is unique for each
firm and is selected algorithmically, depending on certain criteria.

● The XGBoost model is built on the foundation of decision trees
− It creates weak classifier trees (AKA small trees) and sequentially keeps

adding such trees to the model, focusing more on rows that were mis-
classified in previous trees

Tickr Threshold Precision
Positives

Precision
Negatives

Annual
Signals

AAPL 0.33 48% 79% 245
AAPL 0.5 71% 88% 199
AAPL 0.6 70% 90% 156
AAPL 0.7 78% 92% 121
ABT 0.33 67% 79% 74
ABT 0.5 77% 87% 62
ABT 0.6 83% 91% 50
ABT 0.7 86% 97% 37

AMZN 0.33 60% 71% 233
AMZN 0.5 64% 82% 227
AMZN 0.6 74% 89% 204

Out-of-Sample Accuracy for Selected Firms

Out-of-Sample Performance
The out-of-sample performance of the XGBoost sentiment model appeared
to be very good.
● The model outputs a signal

of percent positive, neutral
or negative
– The Softmax function

normalized their sum to 1.0
– The category with the

largest value is the one
with the highest value

● To illustrate the
performance of the model,
the table shows the model
accuracy for various
threshold values
– The table shows that the

model performs above chance for almost all thresholds for both
positive and negative sentiment
Also, performance increases as threshold increases, but number of
cases decreases

Predicting Returns from XGBoost
Although the XGBoost model appears good at predicting sentiment, it does
not perform as well at predicting returns from individual firms.

C
um

ul
at

iv
e

P/
L

(b
p) 20

0
-20
-40
-60
-80

20
15

-0
7

20
15

-0
9

20
15

-1
1

20
16

-0
1

20
16

-0
3

20
16

-0
5

20
16

-0
7

20
16

-0
9

20
16

-1
1

20
17

-0
1

AAPL

C
um

ul
at

iv
e

P/
L

(b
p) 30

20
10
0

-10

20
15

-0
1

20
15

-0
4

20
15

-0
7

20
15

-1
0

20
16

-0
1

20
16

-0
4

20
16

-0
7

20
16

-1
0

20
17

-0
1

ABT

C
um

ul
at

iv
e

P/
L

(b
p) 20

10
0

-10
-20
-30
-40

20
15

-1
1

20
16

-0
1

20
16

-0
3

20
16

-0
5

20
16

-0
7

20
16

-0
9

20
16

-1
1

20
17

-0
1

AMZN

Predicting Index Returns from Sentiment Data
We decided to predict index returns because of the greater number of news
headlines and lower transactions costs

Objective:
● Directly use the sentiment scores to forecast index

movements (LQD / HYG)
● These are ETFs for the investment-grade and high yield

corporate bond indexes, respectively
● They are extremely liquid and have small bid/ask spreads

Challenges:
● Removing daily price impact on the ETF from movements

in Treasury yields
● How to handle features, as we have multiple news

headlines per day
● How to determine the effects of the time horizon for

prediction and testing

We Use Bond Indexes as a Proxy for the ETFs
Because we can get daily spread changes on investment-grade and high
yield bond indexes, we use those as a proxy for their ETFs.

● We used spread changes in Bloomberg/Barclays corporate
bond indexes as proxies for the ETF moves
– LUACTRUU is the investment-grade index
– LF90TRUU is high yield indexes
– Their daily spread moves are available with changes in US Treasury

yields removed
● Metrics
– Duration (OPTION_ADJ_DURATION_SOV_CRV)
– Spread (OAS_SOVEREIGN_CURVE)
– Close Price (PX_LAST)

● Dependent Variable for Training: Spread move up or down
– Up (Label “1”): Spread(t+1) – Spread(t) >= 0
– Down (Label “0”): Spread(t+1) – Spread(t) < 0

● Methodology
– Use news before 4pm to predict the spread’s movements
– News after 4pm will be used to predict next day’s movements
– Do feature engineering (flatten, extraction, …) for news per day

Training data size 1249

Test data size 354

Training data positive ratio 45%

Test data positive ratio 51%

LUACTRUU – Investment-Grade Bond Index

LUACTRUU

Sp
re

ad
 to

 T
re

as
ur

ie
s

(b
p) 260

240
220
200
180
160
140
120
100

2010 2011 2012 2013 2014 2015 2016

● Our sample for the
LUACTRUU consisted of
daily spread changes
from 01-Jan-2010 to 05-
31-2016

● The training sample
consisted of OAS
changes from 01-Jan-
2010 to 12-31-2014
– This was 1249 trading days
– 45% of the trading days the

OAS change was positive
(market bond yields rose)

● The out-of-sample test
periods ranged from 01-
01-2015 to 05-31-2016
– This was 354 trading days
– 51% of the trading days the

OAS change was positive

Daily Bond Spreads

Sample Statistics

Date
Positive_
mean

Positive_
max

Positive_
min

Positive_
q0.25

Positive_
q0.75 ... Is_Monday ... Is_Jan ...

1/4/10 0.42765462 0.856822 0.0259025 0.198021 0.580439 ... 1 ... 1 ...

1/5/10 0.39551849 0.856924 0.0242462 0.1914795 0.56168425 ... 0 ... 1 ...

1/6/10 0.37966194 0.856859 0.020735 0.177211 0.5601955 ... 0 ... 1 ...

1/7/10 0.36742522 0.856851 0.0229957 0.17956425 0.55421 ... 0 ... 1 ...

1/8/10 0.35409329 0.856712 0.0212103 0.175775 0.543231 ... 0 ... 1 ...

Feature Extraction
We summed sentiment scores over the course of a given day in order to
make predictions for a trade (long / short / no trade) just before the close.

● Daily sentiment data from Thompson-Reuters 2 Sigma were
divided into positive, negative, and neutral sentiment

● Each class was then “flattened” before input to the
regression
– Flattened data were: mean, max, min, 25th and 75th percentiles

● How to handle features, as we have multiple news
headlines per day

Example of Flattened Data for Positive Sentiment

● Elastic Net is a linear regression model trained
with L1 and L2 prior as regularizer
– Regularization methods are designed to avoid overfitting
– Our features are not complicated

● The Elastic-net is useful when there are multiple
features which are correlated with one another
– The Lasso method will pick only one of them

● Elastic-Net also inherits some of Ridge’s stability
under rotation

Reference: https://app.datarobot.com/model-docs/tasks/LENETCD-Elastic-Net-
Classifier-mixing-alpha-auto-Binomial-Deviance-.html

Elastic Net Regression Model
The elastic net is a regularized regression method that linearly combines
the L1 and L2 penalties of the lasso and ridge methods.

https://app.datarobot.com/model-docs/tasks/LENETCD-Elastic-Net-Classifier-mixing-alpha-auto-Binomial-Deviance-.html

With a binary 50% threshold, the model is only marginally predictive, but as
signal strength increases, accuracy also increases.

Elastic Net Regression – Out-of-Sample
Performance

● For a binary 50%
threshold, out-of-
sample probability
correct is 55% for
long and short
trades combined
– This corresponds

to an area under
the ROC curve of
0.571

● Performance increases as thresholds increase, but number
of opportunities decrease
– For 60% accuracy, one gets only 52 predictions of 354 days (14%

trading days)
– For 70% accuracy, one gets only 17 (5% trading days) predictions
– For 80% accuracy one gets only 12 (3% trading days) predictions

A
cc

ur
ac

y
(%

)

50 52 56 59 62 65 68 71 74 77 79

1.0
0.8
0.6
0.4
0.2
0.0

Signal Threshold (%)

N
um

ber of Predictions

400

300

200

100

0

Accuracy

Predictions

Chance

Accuracy versus Signal Strength

115

Predicting Market Moves Directly from News
Headlines
We decided to predict market moves directly from news headlines, rather
than going through the intermediate step of sentiment scores.

● Word to vector technology transforms words in natural
language into dense vectors, and semantically similar
words have similar vector representations
– The methodology of generating word vectors is based on statistics

(co-occurrence matrix, SVD decomposition) to the neural network-
based language model

● Before discussing the model, we discuss briefly the
classical language models: from word2vec, ELMo to most
recent and innovative model, BERT
– BERT stands for (Bidirectional Encoder Representations from

Transformers)

Methodology

Word and sentence embeddings have become an essential part of any Deep-

Learning-based natural language processing systems.

● Word2vec and ELMo are two versions of universal

embeddings we consider here
– Word2vec was created by a team of researchers led by Tomáš

Mikolov at Google and patented

– ELMo was developed by. Peters, Neumann, Iyyer, Gardner, Clark,

Lee and Zettlemoyer at the Allen Institute for Artificial Intelligence

● A huge trend is the quest for Universal Embeddings: word

embeddings that are pre-trained on a large corpus and can

be plugged in a variety of downstream task models

(sentimental analysis, classification, translation…)
– A word embedding represents a word with numbers

– By doing so it makes natural language computer-readable

– These universal embeddings incorporate some general

word/sentence representations learned on the large dataset

Methods for Standardized Embeddings

● The Word2vec and ELMo models are described in the next

couple slides

Word2Vec
Word2vec is a group of related models that are used to produce word
embeddings.

● Word2Vec models are two-layer neural networks that are
trained to reconstruct linguistic contexts of words.

● Word2vec takes as its input a large corpus of text and
produces a vector space, typically of several hundred
dimensions, with each unique word in the corpus being
assigned a corresponding vector in the space

● Word vectors are positioned in the vector space such
that words that share common contexts in the corpus are
located in close proximity to one another in the space.
– It doesn’t distinguish the different meaning of a word with the

same tokens
– For example, the word “bank” can relate to the financial

institution or a river bank. The traditional word2vec is not able to
capture this granularity

Word2Vec (cont.)
● Word2vec trains words against

other words that neighbor them
in the input corpus
– It does so using context to predict

a target word (continuous bag of
words - CBOW) or using a word to
predict a target context, which is
called skip-gram

CBOW Skip-gram

will output a much higher probability for “Union” or “Russia” than it will
for “Sasquatch”

Training the Word2Vec Network
(Target word is in blue)

● Train the network by feeding it
word pairs found in training
documents
– The network is learns the

statistics from the number of
times each pairing shows up

– For example, the network is
probably going to get many more
training samples of (“Soviet”,
“Union”) than it is of (“Soviet”,
“Sasquatch”)

– After training, if you give the
network “Soviet” as input, the it

The ELMo model solves the failure of Word2vec to distinguish the different
meaning of a word with the same tokens.

ELMo (Embeddings from Language) Model

● ELMo uses bi-directional
LSTMs to generate features
for downstream tasks, which
bring two advantages:
1. ELMo representations are

purely character based and can
learn the complex
characteristic of word usage

2. Learn the change of word
usage according to the
different context in which it is
used

The ELMo Model

● The bi-directional LSTM consists of 2 parts: a forward LM and a
backward LM
– The forward LM tries to predict the next word given all the previous words

from left to right:

– For each position k, the LSTM outputs a context-dependent representation
where where j=1,...,L and the top layer is applied on a Softmax function to predict
the next word tk+1

Bert model
characteristic
s

● Bidirectional Encoder
Representation from
Transformers

● Unsupervised Pre-
training

● Pre-train deep
bidirectional
representations by jointly
conditioning on both left
and right context in all
layers

The BERT Model Architecture
Transformer Architecture & Benefits

● Instead of the
recurrent
neural
network, it
uses attention
to boost the
speed with
which these
models can be
trained, lends
itself to
parallelization

● Can be
extended to
an intense
layer and
improve
accuracy

BERT Model

Sentence-Level Embedding and Encoder Detail
BERT Input Representation

The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings

First step:
Calculate the Query, Key, and
Value matrices for each word
The dimension of embedding
changed to 512 to 64

Self-Attention Calculation

Following steps:
Q*K(score) determines how much
focus to place on other parts of the
input sentence as we encode a word at
a certain position. dk=64 here

Relation to Attention and Bag or Words Pattern

● The query-key product is high when query and key are in the same sentence
(left), and low when they are in different sentences (right)

Predicting Index Moves with the BERT Model
Google has released pre-trained models from and we applied this architecture and fine-
tune with our own data, sentence level news headlines from Two Sigma.

● We tested this standard workflow on a single firm, AAPL, and tried to predict its
daily spread changes based relevant headlines
– The direct fine-tuned BERT model made almost one-side predictions (all positive)

within a very narrow forecasting range (51 to 52%)
– This means the model cannot capture any signals at all and simply takes the slight

imbalance from the training set to boost its accuracy

● Predicting AAPL spread changes
– Less data, no large GPU required
– 16K headlines from 2013-2016

§ Train Set: 2013 - 2015
– 12.7K headlines; 50.4% Up

§ Test Set: 2016
– 4.1K headlines; 52.7% Up

● Also tried predicting 2Sigma’s
sentiment scores
– labels: -1, 0, 1

A
cc

ur
ac

y
(%

)

50 52 56 59 62 65 68 71 74 77 79

1.0
0.8
0.6
0.4
0.2
0.0

Signal Threshold (%)

N
um

ber of Predictions

400

300

200

100

0

Accuracy

Predictions

Chance

A
cc

ur
ac

y
(%

)

50 52 56 59 62 65 68 71 74 77 79

1.0
0.8
0.6
0.4
0.2
0.0

Signal Threshold (%)

N
um

ber of Predictions

400

300

200

100

0

Accuracy

Predictions

Chance

A
cc

ur
ac

y
(%

)

50 52 56 59 62 65 68 71 74 77 79

1.0
0.8
0.6
0.4
0.2
0.0

Signal Threshold (%)

N
um

ber of Predictions

400

300

200

100

0

Accuracy

Predictions

Chance

Accuracy

Predictions

Chance

51.8 52.0 52.1 52.08 52.11

300
250
200
150
100
50
0

BERT Model Accuracy – APPL
Our-of-Sample Accuracy – 52%

All Positive Predictions

Predicting Sentiment with the BERT Model
We used the BERT model to predict 2 Sigma sentiment data with greater
success.

● Why does the fine-tuned BERT model fail on the spread
change task?
– To answer this question, we switched the task from predicting

spread changes to predicting the sentiment labels

● Despite sentiment prediction being a three classification
problem, the accuracy increased to 66%

● The word-embedding trained from BERT is for a general-
language purpose by a set of standard NLP techniques
such as work masking and contextual predictions
– We looked to modify BERT to work better in the context of spread

changes
– Almost impossible to modify pre-trained based model

§ Need to redo the pre-training process, large finance specific corpus,
large GPU computing resources, time

– Is possible to change last layers / downstream models
§ Only use a fine-tuned BERT as an embedding tool to extract features
§ Still takes advantage of Google’s large pre-trained model but allows

more flexible downstream models

BERT: Sentence Embedding
We suspected that using a more complicated downstream model to replace
the original soft-max layer might generate better predictions

The Revised BERT Workflow

● After fine-tuning the Base (12 layers) BERT model, we pick the word
embedding from the 11th layer and use average pooling to get a fixed-
dimension vector that represents each headline
– Those fixed-dimension vectors then act as the input features for a

downstream machine learning model to forecast spread changes

BERT: Why We Pick the 11th Layer
● The BERT model is pretrained with a bi-partite target (masked

language model and next sentence prediction), which makes the
last layer too biased to those two targets
– Using the last layer is as same as in stacked LSTM/CNN
– Taking a layer in front, the transformed embedding still carries the

original word information without BERT’s self-attention benefits

Reference: https://hanxiao.github.io/2019/01/02/Serving-Google-BERT-in-Production-using-Tensorflow-and-
ZeroMQ/

1

7

2

1
1

3

9

4

8 10 11

5 6

12

PCA Evaluation of BERT Layers using “Best-as-Service”

● Xiao Han applied BERT model on 20K news titles and used PCA to
flatten each layer’s output into a 2D plot
– Each color represents a topic of those news, we can easily observe that

the classification effects are most obvious in the last two layers

https://hanxiao.github.io/2019/01/02/Serving-Google-BERT-in-Production-using-Tensorflow-and-ZeroMQ/

● Each headline was converted into a vector (1 x 768)

● Also used (one-hot) categorical features from date for
days of week and months of year

127

BERT Model: Encoded Features

Date headline Is_Monday ... Is_Jan ... 0 1 2 ...

5/1/13
garmin profit

misses estimates 0 ... 0 ... -0.21515 0.66142 0.068004 ...

5/1/13
reuters insider -

u.s. ... 0 ... 0 ... -0.30309 0.81203 0.199902 ...

Sub-Sample of Input Vector

AAPL:
Per news data
directly

Index:
Cannot do it that
way as data too
large (13GB after
encoding)

129

Empirical Results: Predicting LUACTRUU
● We use headlines from 2010-01-01 tot 2014-12-31 as the

training set and headlines from 2015-01-01 to 2016-05-31 as
the test set
– More than a million LQD relevant headlines are selected
– The fine-tuning process took more than 24 hours with a 20GB RAM

GPU and then 4 hours to convert into numerical sentence
embedding, where each embedding has a fixed length 768

● Data Pre-Processing
– Use list of tickers (Bloomberg) to filter relevant news from 2010 to

2016

● Predicting LQD’s spread changes
– Haas GPU Server (20GB GPU RAM)
– 1M+ headlines from 2010 to 2016

● Training Time
– 1M+ News took more than 24hrs with a 20GB RAM GPU to fine tune a

BERT base model (12 layers)
– After Embedding, the embedded data (numerical features) is around

13GB
– Average encoded vectors per day instead of training at news level

(How we did for AAPL)

BERT Predicting Corporate Bond Index Changes
Downstream Models using BERT Embeddings

Downstream Model Performance

Model Name Accuracy AUC

True
Positive

Rate

True
Negative

Rate

Gradient Boosted Greedy Trees Classifier with Early Stopping 0.564 0.6237 0.5633 0.5648
RuleFit Classifier 0.5724 0.6157 0.5829 0.5607
AVG Blender 0.5721 0.613 0.5924 0.5495
Generalized Additive Model 0.5728 0.6037 0.6056 0.5363
Elastic-Net Classifier 0.5623 0.5997 0.5829 0.5394
Extra Trees Classifier (Gini) 0.564 0.5953 0.5943 0.5302
Decision Tree 0.5585 0.5782 0.5856 0.5282
Tensorflow Neural Network (1 layer, 128K hidden units) 0.5541 0.5756 0.6826 0.4109
Logistic Regression 0.5402 0.5752 0.5428 0.5373
Random Forest 0.5256 0.5346 0.5965 0.4464

131

OOS Metrics Sentiment BERT

Accuracy 55.24% 56.50%

AUC 0.5717 0.5716

F1 0.5537 0.5575

Precision 56.00% 57.75%

True Pos Rate 54.75% 53.89%

True Neg Rate 55.75% 59.20%

● The BERT model outperforms
the original sentiment model
(with 2 sigma data) with 1.2%
more accuracy without
thresholding
– 1% less accurate on positive

predictions and 3% more accurate
on negative predictions.

● Thresholds
– 60% Accuracy with 114 predictions;

70% with 17 predictions; 100% with
4 predictions

Performance : BERT vs.
Sentiment Benchmark

Accuracy

Predictions

Chance

50 53 57 61 65 68 72 76 80 83 87

Results: Sentiment Model versus BERT

Results: Sentiment versus BERT (cont.)
● BERT results are hitting thresholds faster in terms of

Accuracy and TPR. In terms of TNR, the original model is
much faster at 60% threshold but break afterward.

Accuracy Comparison
Full Sample

0.9

0.8

0.7

0.6

350 300 250 200 150 100 50 0
Total Predictions

Pr
ob

ab
ili

ty
 C

or
re

ct

0.9

0.8

0.7

0.6

100 80 60 40 20 0
Positive Predictions

Pr
ob

ab
ili

ty
 C

or
re

ct

Accuracy Comparison
True Positives

0.9
0.8
0.7
0.6
0.5

100 80 60 40 20 0
Negative PredictionsPr

ob
ab

ili
ty

 C
or

re
ct

Accuracy Comparison
True Negatives

● It is possible to predict one-day changes in corporate bond
spreads at better-than-chance levels
– Models based on 2 Sigma’s sentiment data as well as the modified BERT

model perform better than chance

● The BERT model outperforms the original sentiment model
with 1.2% greater accuracy without thresholding
– BERT is 1% less accurate on positive predictions and 3% more accurate on

negative predictions

● By examining performance at probability correct
thresholds of 60, 70, 80% Accuracy/TPR/TNR:
– In Sample: BERT results are much smoother and always beats the original

model

– Out of Sample:

§ BERT results are hitting thresholds faster in terms of Accuracy and True Positive

Rate

§ In terms of True Negative Rate, the original model the 60% threshold much

faster, but underperforms the BERT model at higher thresholds.

Summary of BERT Model Performance

I thank Yiming Yu, Juntao Fang, Nathan Johnson and Teddy Legros from the University of
California at Berkeley’s MFE program for their important contributions to this project.

How AI/ML is Transforming Bond Markets

Machine Learning and Neural Networks in Finance

One of the last projects I worked on in the credit trading business was optimizing
credit trading, inventory management, and building a credit trading robot.

How AI/ML is Transforming Credit Markets

● Recently, we have made progress at developing a corporate
bond trading robot (i.e. an algorithm that makes markets in
corporate bonds
⏤ This was done using a deep learning neural network

● Typically, traders are concerned with making money on the
bid/ask spread of the bonds that they trade, but this ignores
other important considerations, many of which have only
begun to be studied (by us).

● For example, these include:
1. Client Accuracy by Holding Period: The previous study showed

how we can predict bond price moves from client activity (we
have other evidence as well). Should we bid aggressively for
bonds that are going to decrease in price, and vice versa? In
general, the answer is “no”, but not always as it depends on
other factors.

135
Benzschawel Scientific, LLC

2. Bond Relative Value: For example, if a client sells a bond and the
trading desk holds it in inventory for one day, over 52% (of 200,000
trades) the bond will decrease in price. Furthermore, we find that,
on average, clients buy the “cheap” bonds and sell the “rich” ones
(which we know from the CaR strategy that cheap bonds richen and
vice versa). Thus, bond relative value is an important consideration
in what should be the bid/offer for a bond.

3. Bond Liquidity: We have analyzed how long on average bonds with
given characteristics will remain in the trading desk’s inventory (i.e.,
their liquidity). If a bond is hard to sell (or buy) and its price will go
against us, we ought not bid aggressively for that trade.

4. Net Inventory Position: Trading desks get charged for the price
volatility of their inventory as it uses the firm’s capital. Thus, if the
desk is net long and a customer wants to sell a bond, one should,
all else equal, be eager to buy it as it makes the desk more neutral.
Thus, it is important to consider how a bond will affect one’s net
holdings.

How AI/ML is Transforming Credit Markets

136
Benzschawel Scientific, LLC

5. Other Factors: There are other factors as well (bond volatility and
suitability for inclusion in an ETF), but we can ignore those for
now

● It is difficult, if not impossible, for a trader to take into account all
these factors when faced with an RFQ (request for quote).
However, a machine can do this.

● In fact, we have begun to take these factors into account to
present to traders what we think is the optimal bid/ask for any
given bond.

● Right now, we are only able to generate a “red” (do not bid
aggressively) or “green” (bid aggressively) signal to the traders
when an RFQ comes in. However, the ultimate goal is to actually
set the bid/ask spread for the trader.

How AI/ML is Transforming Credit Markets

137
Benzschawel Scientific, LLC

● The rise of machine learning is a watershed event for quants
⏤ However, new sets of skills are required and old ones are less critical

● Although it remains important for quants to know some
things about quantitative finance, including derivatives
pricing
⏤ These include term structure modelling of interest rates, options

pricing, stochastic calculus and credit models,
● However, these will likely not be central to many jobs
● Successful quants will require expertise on machine learning

methods of all types, along with an increasing reliance on
statistics and inference methods
⏤ Experience and confidence in handline unstructured problems and

related data will be in demand
● Strong computing science skills that focus on data storage

and management will be required
● Finally, there will be no substitute for knowledge of the

trading business.

AI and ML methods are becoming critical in bond trading activities. This has
important implications for quants, traders, salespeople and fundamental analysts.

How AI/ML is Transforming Credit Markets

Quants

138
Benzschawel Scientific, LLC

● The role of the trader of the future will also change
● Traders will need to be cognizant of the many factors that

affect the optimality of their trades and. For example, if a
trader can not
⏤ They will be evaluated with respect to those factors
⏤ These include term structure modelling of interest rates, options

pricing, stochastic calculus and credit models,
● However, these will likely not be central to many jobs
● Successful quants will require expertise on machine learning

methods of all types, along with an increasing reliance on
statistics and inference methods
⏤ Experience and confidence in handline unstructured problems and

related data will be in demand
● Strong computing science skills that focus on data storage

and management will be required
● Finally, there will be no substitute for knowledge of the

trading business.

How AI/ML is Transforming Credit Markets
Traders

139
Benzschawel Scientific, LLC

● Salespeople will now be required to know their client in
even greater detail
⏤ They will need to understand the client’s profitability over time

along with the characteristics of the bonds they tend to buy
⏤ Clients will reward them for keeping them out of trades that are

unprofitable and showing them unskillful patterns of trading
behavior

● Salespeople will need to know the characteristics of bonds
they are selling
⏤ Is the bond trading “rich”, “cheap” or “fair”
⏤ What is the probability that the trade will be profitable for the client?

Over what horizon?

● Salespeople will be more proactive
⏤ If a bond becomes available that the salesperson thinks would be

profitable for the client, they should contact the client
⏤ If the client bids for a bond not in inventory but there is a bond with

similar characteristics in inventory, the salesperson should let the
client know

How AI/ML is Transforming Credit Markets
Salespeople

140
Benzschawel Scientific, LLC

● Machines will take over a portion of what fundamental
analysts do
⏤ Systematic computer-based trading strategies have already become

ubiquitous in the foreign exchange and equity markets
⏤ This is also moving to the bond market
⏤ The combination of advances in natural language processing and

its relationship to market moves will provide competition to
analysts from machines

● The ability to analyze sentiment data independent of a
human will pose fundamental changes for analysts
⏤ There will be a greater demand for good research to feed those

models
● Analysts will be more accountable

⏤ It will now become easier to track analysts forecasts for accuracy
⏤ Analysts will be evaluated as to whether they add useful

information over what comes out on average
⏤ Analysts who are correct will be highly sought after for their

opinions, but those that are poor will now be exposed and
eliminated.

How AI/ML is Transforming Credit Markets
Fundamental Analysts

141
Benzschawel Scientific, LLC

References
Benzschawel, T. and Guth, S. ATDN: Toward a Uniform Color Space, Color

Research and Applications 9 (3), pp. 133-141, 1984
Breiman, L. Bagging Predictors, Machine Learning 24 (2), pp. 123-140, 1996
De Ono, J. and Garrido, C. Extracting the Contribution of Independent Variables in

Neural Network Models: a New Approach to Handle Instability, Neural
Computing and Applications 25 (3-4):859-869 · September 2014

Freund, Y. and Schapire, R. E. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting". Journal of Computer and System
Sciences. 55: 119, 1997

Garson, D. Interpreting Neural-Network Connection Weights. Artificial Intelligence
Expert 6, pp. 47–51, 1991

Hahnloser, R, Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S.
Digital Selection and Analogue Amplification Coexist in a Cortex-Inspired Silicon
Circuit". Nature. 405: 947–951, 2000

Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (2nd ed.). New York: Springer, 2009

Klimasauskas, C. C. Neural Networks: A New Technology for Information
Processing, Data Base 20, pp. 21-23, 1989

MacAdam, D. Visual Sensitivities to Color Differences in Daylight, Journal of the
Optical Society of America 32 (5), pp. 247-274, 1942

142
Benzschawel Scientific, LLC

References (cont.)
Mikolov, T., Sutskever, I,. Chen, K., Corrado, G., and Dean, J. Distributed

Representations of Words and Phrases and their Compositionality. In: Advances
in Neural Information Processing Systems, 2013

McCulloch, W. and Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous

Activity, Bulletin of Mathematical Biophysics 5, p. 155-133, 1943
Minsky M. L. and Papert, S. A. Perceptrons. Cambridge, MA: MIT Press, 1969
Moore, A. and Rayson, P. Evaluation Metrics Matter: Predicting Sentiment from

Financial News Headlines, In: arXiv preprint arXiv:1705.00571, 2017
Olden, J. D. and Jackson, D. A. Illuminating the “Black Box”: A Randomization

Approach for Understanding Variable Contributions in Artificial Neural Networks,
Ecological Modelling 154, pp. 135-150, 2002

Robbins, H. and Monro, S. A Stochastic Approximation Method, The Annals of
Mathematical Statistics, 22, 3, pp. 400-407, 1951

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information

Storage and Organization in the Brain, Cornell Aeronautical Laboratory,
Psychological Review, 65, No. 6, pp. 386–408, 1958

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning Representations by

Back-Propagating Errors, Nature, 323, 533--536, 1986
Rumelhart, D., McClelland, J. and the PDP Research Group (Eds.): Parallel

Distributed Processing: Explorations in the Microstructure of Cognition. MIT
Press, Cambridge, 1986

143
Benzschawel Scientific, LLC

Benzschawel Scientific, LLC 144

References (cont.)
Velay, M. and Daniel, F.. Using NLP on News Headlines to Predict Index Trends. In:

arXiv:1806.09533v1, June 2018

Schumaker, R. and Chen, H. A Quantitative Stock Prediction System Based on
Financial News, In: Information Processing and Management, pp. 571–583, 2009

Thompson-Reuters, Thomson Reuters StarMine Quantitative Analytics, 2016
Velay, M. and Daniel, F.. Using NLP on News Headlines to Predict Index Trends. In:

arXiv:1806.09533v1, June 2018

