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Introduction

Time Series Drivers:

® Historical data:

® Incorporated in classical time series forecast methods

® Works best when the underlying model is fix

® Exogenous processes:

® Not included in historical observations
¢ Difficult to incorporate via classical methods

® Could indicate changes in the underlying model
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Techniques to handle changes due to external forces:
¢ Jump Diffusion Models
® Regime Switching Methods
e System of Weighted Experts

e QOthers ...

|
These methods do not directly integrate alternative data sources
available to us
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Introduction

Alternative data sources:

N
* Text & News Analysis

® Social Networks Data automated data mining survey

® Sentiment Analysis qualatati oot cause
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Alternative data sources:
1
e Text & News Analysis

® Social Networks Data

® Sentiment Analysis
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Alternative data sources:

|
e Text & News Analysis

® Social Networks Data

e Sentiment Analysis
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Introduction

We study time series forecast methods that are:
|
® Dynamic
¢ Context-Based
® Capable of Integrating Social, Text, and Sentiment Data

In this presentation we develop:

® Stochastic dynamic programming model for time series forecast
® Rely on an “external forecast” for future values

® External forecast allows to incorporate alternative data
sources
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Traditional Approach

Time Series Fitting Process
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Traditional Approach
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Traditional Approach
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Traditional Approach
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Traditional Approach
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Traditional Approach
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Traditional Approach
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Traditional Time Series Fitting

Main Problem:

mell

-
mlnE th(st,at) 5
t=1
where a; = m¢(xq, ..., x;) is an admissible fitting policy.
® The time series model is parametrized by © C R¢
® A(s) = O for all states s

® (s, a) is the result of a goodness of fit test for the observations
s = (xo,-..,X) and model selection a = 6

¢ Solution via Bellman’s optimality equations
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Traditional Time Series Fitting

Conditions to guarantee optimality:

The set of actions A(s) is compact

The cost functions ¢ (s, ) are lower semicontinuous

® For every measurable selection a;(-) € A¢(-), the functions s c(s, a(s))
and cr(-) are elements of £1(S, Bs, Po)

® The DP stochastic kernel function Q;(s, -) is continuous
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Traditional Time Series Fitting

Value Functions: Value functions v; : S - R, t =1,..., T, given recursively by:

vr(s) = cr(s)

c
vi(s) = min_{ci(s,8) + Elvia s, ]},

forallseSandt=T-1,...,0.

Bellman’s Optimality Equations

Then an optimal Markov policy 7* = {7g,...,m%_;} exists and satisfies the
equations:

7; (s) € argmin{ce(s,a) + E[vet1|s,al}, s€S, t=T—-1,...,0.
acA:(s)

Conversely, any measurable solution of these is an optimal Markov policy 7*.
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Traditional Time Series Fitting

Notice that:

® Qur choice of model does not affect future observations and
cost.

® So, E[v|s,a] = E|[v|s, ], for any (s, a),(s,a’) € graph(A).
® Therefore we can rewrite the optimal policy as:

m;(s) € argmin{c(s,a)}, s€ S, t=T—1,...,0.
acAs(s)
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Traditional Time Series Fitting

Notice that:

® Qur choice of model does not affect future observations and
cost.

® So, E[v|s,a] = E|[v|s, ], for any (s, a),(s,a’) € graph(A).

® Therefore we can rewrite the optimal policy as:

m;(s) € argmin{c(s,a)}, s€ S, t=T—1,...,0.
acAs(s)

¢ The optimal policy 7* is purely myopic
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Traditional Time Series Fitting

Q: How to break with the myopic policy?
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Traditional Time Series Fitting

A: Introduce a new Markov model
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New Markov Model

New Markov Model:

® Given stochastic process {X; | t =0,..., T}, s.t. Xo = {0}
® Time series model parameterized by © C R¢

e State space:

X; observation from X;,
Se =1 (x¢, ht—1,0:-1) | ht =Xo,...,%—1 sample sequence ,

0i—1 = (¢1,...,0p) €O

e Action space: A(s) = © for all states s € S;
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New Markov Model

Ct(Sy Qt) = ’Y(Sta 9t) + r5(5t, Oe_1, et)

® ~: Goodness of fit test
® ): Penalty on changes from previous model selection

® r > 0: Scaling factor used to balance fit and penalty
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New Markov Model

X2 (O | he—1,x¢) +r (1 — exp {_)\ |]E [Po, | he—1,x:] — E [Pot_l | ht—laXt] |}) »

where r, A > 0.

® (s, 0;) = X2 (O | he—1, x¢)

® (st,0t-1,0:) ;=1 —exp {—>\ |E[P0[ | he—1,x] — E [Pat,l | ht—lyxt] |}
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New Markov Model

Dynamic Optimization Model:
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New Markov Model

Dynamic Optimization Model:

50 = Zo
*
ap = ¢;

. ~ enforces good fit
X1 =¢iz0+ €

downstream ¢ adds cost
for changing model
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New Markov Model

Dynamic Optimization Model:
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New Markov Model

Dynamic Optimization Model:
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New Markov Model

Dynamic Optimization Model:
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Dynamic Optimization Model:
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Lookahead Methods

Introducing Exogenous Information Via
Lookahead Methods
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Lookahead Methods

Lookahead Methods:

® At time t we have access to forecast random variables:

Yt

Yt
Xeitr s Xeah
® We assume these are discrete approximations to Xii1,. .., Xi1p

® Each forecast induces a discrete probability measure on &

We expect the forecasts to be finite random variables with few atoms

This has the effect of simplifying calculations, but at the expense of rough
approximations.
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Lookahead Methods

Basic lookahead method:

Step 0 Initialization:
Step Oa Initialize V¢(s) for all time periods t and all s € S.
Step Ob Choose an initial state sg.

Step1 Fort=0,..., T do:

Step la Update the state variable: observe a value x; of the stochastic process, let
st be obtained from x; and model selection at ¢t — 1, and get forecasts
Xet1y ooy Xegh

Step 1b Solve

Vi = argxr?St) {Ct(sh at) +E [V’H’1 | Sty at]} ’

by solving a stochastic optimization problem. Let a; be the obtained optimal
solution to the minimization problem.
Step 1c Update the value function approximation v;:

\7t(5) = {Ot’ if s = s,

Ve(s), otherwise.

Step 2 Return the value functions {v; | t =0,1,..., T}.

20/34
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Lookahead Methods

Basic Monte Carlo Algorithm:
Step 0 Initialization:
Step 0a Initialize V2(s) for all time periods t and all s € S.
Step Ob Choose an initial state s;.
Step Oc Solve the problem the previous method and denote the resulting value
function approximations v*, t =0..., T.
Step 0d Set n=1.
Step1 Fort=0,..., T do:
Step la Update the state variable: Observe a value x{" of the stochastic process, let
s{ be obtained from x! and model selection at t — 1, and get forecasts
tn+17 R th+h'
Step 1b Solve

\7: = min {Ct(S:,at)+E[\7t+1|5£1,3t]},
ar€EAL(sf)

as before. Let a] be the obtained optimal solution to the minimization
problem.
Step 1c Update the value function approximation v/
—n—1 ~ .
() = {(1 L LN O RSO P

=n—1

v (s), otherwise.

Step 2 Let n=n+1. If n <N, go to Step 1.
Step 3 Return the value functions {¥} | t=0,1,..., T}.
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Numerical Results |

Numerical Results |
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Numerical Results |

Estimation Techniques I:

e Initial test: Natural Gas Futures Contract 4 - times series (RNGC4), 1999 —
2013.
® Test approximate dynamic programming method (MSE_) over 1 to 10 days
forecast window, comparing the calibration of machine learning algorithms
used for regression and classification:
® Support vector machine (SVM)
® Random forests (RF)
°* ARIMA
® Logistic regression (LR ) — Benchmark

® 2nd test: Crude Oil Spot (WTI), Aug. 2015 — Jan. 2016.
® We made two main tests by using approximations to “futre” WTI Spot on
different time windows:

® Actual values + random white noise with increasing variance
® Actual values + white noise + increasing bias
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Numerical Results |

RNGC4

Energy Time Series
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Numerical Re:

Performance of Three Algorithms vs Benchmark

2 4 6 8 10
——MSERF  ——MSE_SVM = ——MSE_ARIMA Bench mark
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Numerical R:

Learners vs LR Benchmark
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Numerical R:

Simulation Test

> S N S A T R SR SN AN S S & & §°
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—WTI Spot ——Benchmark Dynamic ARIMA Dynamic SVM  —Dynamic RF —Dynamic CART
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Numerical Results |

Model RMSE
Noise Variance |
Model 0.001 0.01 0.05 0.1 0.5 1
ARIMA 0.0003227 0.000389 0.001943 0.004214 0.008405 0.007514
SVM 0.000776849 0.000818 0.002475 0.008127 0.099774 0.16513
RF 0.000175392 0.00023 0.001843 0.003496 0.007223 0.008425
CART 0.000483638 0.000504 0.002376 0.006527 0.023588 0.024053

[Benchmark |~ 0.001116097|

Unbiased Random Noise External Forecast Test
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Numerical Results |

[ARIMA Baseline 490.6124
RF Baseline 502.5576
CART Baseline 967.2576|

0.001 0.01 0.03 0.05 0.1 0.5 1 2
ARIMA 384.0882 380.7184 379.9081 373.224 380.9279 386.4873 473.5217
RF 28.16006 30.8183 36.77366 45.00305 56.97973 195.9457 282.2603 389.0374
CART 6.680402 29.53345 46.15347 64.68325 147.4693 497.2315 725.8215 863.787

ARIMA Baseline 627.327
RF Baseline 804.8075
CART Baseline 1588.515

0.001 0.01 0.03 0.05 0.1 0.5 1 2]
ARIMA 586.0408 586.1985 586.4885 587.7807 590.063 624.0278 705.4027
RF 71.76113 87.90271 117.1728 146.3925 199.0221 424.4266 528.3886 618.359
CART 12.98331 65.70607 135.9031 240.7952 369.7038 913.2118 1188.266 1422.569)

Biased Random Noise External Simulation: 10 and 50 Days Windows
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Numerical Results |

Numerical Results 2
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Numerical Results 2

Estimation Techniques Il:

® 3rd test: Crude Oil Spot (WTI). Test approximate dynamic programming
method over 1, 5, and 5 days forecast window, using different ML dynamic
techniques with actual + white noise as “future” data:

® Support vector machine (SVM)
® Classification and regression trees (CART)
°* ARIMA

® Logistic regression (LR ) — Benchmark

® 4th test:SVM futures WTI and SVM sparse “future” data on WTI spot.
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Numerical Results 2

wti Spot

766 1021 1276 1531 1786 2,081 2296 2551 2,806 3061 3316 3571 3826 4081 4336 4501 4846 5101 5356 5611 5866 6121 6376 6631 6886 7,141 7,396

WTI Spot
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Numerical Results 2

1-Day Forecast

1 8 101 21 141 161 181
Actual —Baselline —ARIMA, o(€)=0.1 —CART,a(€)=0.1 —SVM, o{€)=0.1

1-Day Forecast
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Numerical Results 2

1-Day Forecast Error

141
Baseline —ARIMA, 6(€)=0.1 —CART,0(€)=0.1 —SVM, o(€)=0.1

1-Day Forecast Error
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Numerical Results 2

5-Day Forecast
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i
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Actual —Baseline —ARIMA, o(€) =0.02 —CART, o(€)=0.02 —SVM, 6(€)=0.02 —ARIMA, o(€)=0.1 ~ CART, 0(€)=0.1 —SVM, o(€) =0.02

5-Day Forecast
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Numerical Results 2

10-Day Forecast

21 a1 61 81 101 121 141 161 181 201 221
Actual —Baseline —ARIMA, o(€)=0.02 —CART,0(€)=0.02 —SVM, o(€)=0.02 —ARIMA, o(€)=0.1  CART,0(€)=0.1 — SVM, o(€) =0.02

10-Day Forecast
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Numerical Results 2

Numerical Results 2.2

SVM — CART Analysis
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Numerical Results 2

SVM - 15 Days Window

Actual Simple SVM  —SVM, o(€) =0.1 —SVM, o(€) =0.5

SVM 15 Days Window
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Numerical Results 2

CART - 15 Days Window

[ L N
=T P

ad e =V L b
J;"Q‘\_.A" ¥, Tacktn

121 141 161 181 201 221 241 261 281 301 321
Actual Simple CART —Cart, o(€)=0.1 —Cart, o(€) =0.5 Cart, o(€) =

CART 15 Days Window
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Numerical Results 2

SVM - 20 Days Window

Actual —SimpleSYM  —SVM, 6(€) =0.1 —SVM, o(€)=0.5 —SVM, o(€)=1

SVM 20 Days Window
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Numerical Results 2

CART - 20 Days Window

Actual Simple CART —Cart, o(€) =0.1 —Cart, o(€) =0.5 Cart, o(€) =1

CART 20 Days Window
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Numerical Results 2
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Numerical Results 2

CART - 25 Days Window

m 1 e w1 e w1 s s
Actual —Simple CART —Cart, (€)=0.1 —Cart, o{€)=0.5 —Cart, o(€) =1

CART 25 Days Window
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Numerical Results 2

SVM - 30 Days Window

101 121 141 161 181 200 221 241 261 281 301 321 341 361 381
Actual Simple SYM  —SVM, 6(€) =0.1 —SVM, o(€) =0.5 SVM, o(€) =1

SVM 30 Days Window
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Numerical Results 2

CART - 30 Days Window

101 121 141 161 181 200 221 241 261 281 301 321 341
Actual Simple CART —Cart, 0(€)=0.1 —Cart, o(€) =0.5 Cart, o(€) =1

CART 30 Days Window
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Numerical Results 2

Numerical Results 2.3

WTI Futures — Sparse SVM Analysis
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Numerical Results 2

wti Futures

766 1021 1276 1531 1785 2011 27296 2551 2,806 3061 3316 3571 386 4081 4336 4591 4816 5101 535 5611 5866 6121 6376 6631 6886 7,141 739%

WTI Futures
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Numerical Results 2

wti: |Futures - Spot|
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Numerical Results 2

SVM - Futures

766 1,021 1,276 1,531 1,786 2,041 2,296 2,551
Actual Data Futures Data —Simple SVM —Dynamic SVM

SVM Futures
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Numerical Results 2

Error Comparison

| | 1
i ! W ‘ “
0 LMMJMMMMML MJL.M\WMMMUL “KMMM,'WJ»M »Ju AL Ll
1 256 511 766 1,021 1,276 1,531 1,786 2,041 2,296 2,551 2,806
Futures Simple SYM  —Dynamic SVM

SVM Futures Error Comparison
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Numerical Results 2

SVM Sparse Forecast

Actual Data Simple SVM  —5 point from 30

SVM Sparse Forecast
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Numerical Results 2

Numerical Results 3
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Numerical Results I11

Estimation Techniques IlI:

® Test our approximate programming dynamic method comparing the
calibration of two machine learning algorithms used for regression and
classification: support vector machine (SVM) and random forests (RF).

® For regression analysis:

® Support vector regression (SVR): minimizes a loss function using only the
most relevant values.

® Random forests for regression (RFR): explores a large search space based on
random selection of its features and samples.

® External forecast function for daily data of WTI log returns: 1 month WTI
futures price at the end of every month.

® Training & test dataset: 15 lags of the dependent variable and technical
indicators:

® Price indicators: Simple moving averages with 10 and 20 days.
® Momentum indicators: Relative strength index with 10 and 20 days, and the
moving average convergence divergence.

® The test sample includes the forecast function.
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Numerical Results 111

Log return (%)

e S\VR-ADP SVR e ARM A{1,1) W

WTI log return and forecasts by ARMA(1,1), support vector regression (SVR), and the
approximate dynamic programming SVR (SVR-ADP) for June and July 2014.
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Numerical Results 111

25

= 05 / | \
e ’l o
5 o 4% o .
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:n \h )’A “A )
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& \ A X
-1
-15
2
-25

e RFR-ADP RFR == ARMA(L,1) WTI

WTI log return and forecasts by ARMA(1,1), random forest for regression (RFR), and
the approximate dynamic programming RFR (RFR-ADP) for June and July 2014.
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Nume REST
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Root mean squared error

=
=

WADP mStaric

Root mean squared error (RMSE) of ADP and static (benchmark) methods.
SVR, RFR, and x10 stand for support vector regression, random forest for regression,
and 10 times 40 folds cross-validation respectively.
The error bars represent standard error. RMSE mean differences of SVR-ADP and
RFR-ADP in relation to their static versions and ARMA(1,1) and CART are
statistically significant with 99% confidence level .
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Numerical Results 111

08
07
05
05
04
03
02
01
CART sV RF

Matthews correlation coefficient

[

mADP mStatic

Matthews correlation coefficient of ADP and static (benchmark) methods. SVM and
RF stand for support vector machine and random forest respectively. The error bars
represen standard error. MCC mean differences of SVM-ADP and RF-ADP in relation
to their static versions and CART are statistically significant with 95% conf.level.

R. Collado (Stevens) Learning Time Series and Dynamic Programming September 10, 2019 34 /34



Numerical Results 111

0.35

03

0.25

02

Test error

0.15

01

B - .
1]
SVM

mADP m Staic

Test error of ADP and static (benchmark) methods. SVM and RF stand for support
vector machine and random forest respectively. The error bars represent standard
error. Test error mean differences of SVM-ADP and RF-ADP in relation to their static
versions and CART are statistically significant with 95% confidence level.

R. Collado (Stevens) Learning Time Serie: i i September 10, 2019 34 /34



