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Introduction

Time Series Analysis and External Forces I

Time Series Drivers:

• Historical data:

• Incorporated in classical time series forecast methods

• Works best when the underlying model is fix

• Exogenous processes:

• Not included in historical observations

• Difficult to incorporate via classical methods

• Could indicate changes in the underlying model
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Introduction

Time Series Analysis and External Forces II

Techniques to handle changes due to external forces:

• Jump Diffusion Models

• Regime Switching Methods

• System of Weighted Experts

• Others . . .

These methods do not directly integrate alternative data sources
available to us
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Introduction

Time Series Analysis and External Forces III

Alternative data sources:

• Text & News Analysis

• Social Networks Data

• Sentiment Analysis
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Introduction

Time Series Analysis and External Forces IV

We study time series forecast methods that are:

• Dynamic

• Context-Based

• Capable of Integrating Social, Text, and Sentiment Data

In this presentation we develop:

• Stochastic dynamic programming model for time series forecast
• Rely on an “external forecast” for future values

• External forecast allows to incorporate alternative data
sources
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Traditional Approach

Traditional Approach

Time Series Fitting Process
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Traditional Approach

Illustration

s0 = x0

a0 = �⇤
1

X1 = �⇤
1x0 + ✏1

A = {� 2 R}

s0

R. Collado (Stevens) Learning Time Series and Dynamic Programming September 10, 2019 7 / 34



Traditional Approach

Illustration

s0 = x0

a0 = �⇤
1

X1 = �⇤
1x0 + ✏1

s0

R. Collado (Stevens) Learning Time Series and Dynamic Programming September 10, 2019 7 / 34



Traditional Approach

Illustration
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Traditional Approach

Illustration

s2 = x2

a2 = �⇤
3

X3 = �⇤
3x2 + ✏3

s0

s2

s1
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Traditional Approach

Illustration

s3 = x3

a3 = �⇤
4

X4 = �⇤
4x3 + ✏4

s0

s2

s3

s1
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Traditional Approach

Illustration

s4 = x4

a4 = �⇤
5

X5 = �⇤
5x4 + ✏5
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Traditional Time Series Fitting

Traditional Model I

Main Problem:

min
π∈Π

E

[
T∑
t=1

ct(st , at)

]
,

where at = πt(x1, . . . , xt) is an admissible fitting policy.

• The time series model is parametrized by Θ ⊆ Rd

• A(s) = Θ for all states s

• ct(s, a) is the result of a goodness of fit test for the observations
s = (x0, . . . , xt) and model selection a = θ

• Solution via Bellman’s optimality equations
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Traditional Time Series Fitting

Classic Model II

Conditions to guarantee optimality:

• The set of actions A(s) is compact

• The cost functions ct(s, ·) are lower semicontinuous

• For every measurable selection at(·) ∈ At(·), the functions s 7→ ct(s, at(s))
and cT (·) are elements of L1(S,BS ,P0)

• The DP stochastic kernel function Qt(s, ·) is continuous
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Traditional Time Series Fitting

Classic Model III

Value Functions: Value functions vt : S → R, t = 1, . . . ,T , given recursively by:

vT (s) = cT (s)

vt(s) = min
a∈At(s)

{ct(s, a) + E [vt+1 | s, a]} ,

for all s ∈ S and t = T − 1, . . . , 0.

Bellman’s Optimality Equations:

Then an optimal Markov policy π∗ = {π∗0 , . . . , π∗T−1} exists and satisfies the
equations:

π∗t (s) ∈ arg min
a∈At(s)

{ct(s, a) + E [vt+1 | s, a]}, s ∈ S, t = T − 1, . . . , 0.

Conversely, any measurable solution of these is an optimal Markov policy π∗.
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Traditional Time Series Fitting

Traditional Model IV

Notice that:

• Our choice of model does not affect future observations and
cost.

• So, E [v | s, a] = E [v | s, a′], for any (s, a), (s, a′) ∈ graph(A).

• Therefore we can rewrite the optimal policy as:

π∗t (s) ∈ arg min
a∈At(s)

{ct(s, a)}, s ∈ S, t = T − 1, . . . , 0.

• The optimal policy π∗ is purely myopic
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Traditional Time Series Fitting

What to do?

Q: How to break with the myopic policy?
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Traditional Time Series Fitting

What to do?

A: Introduce a new Markov model
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New Markov Model

New Markov Model I

New Markov Model:

• Given stochastic process {Xt | t = 0, . . . ,T}, s.t. X0 = {φ0}

• Time series model parameterized by Θ ⊆ Rd

• State space:

St =

(xt , ht−1, θt−1)

∣∣∣∣∣∣∣
xt observation from Xt ,

ht = x0, . . . , xt−1 sample sequence ,

θt−1 = (φ1, . . . , φp) ∈ Θ


• Action space: A(s) = Θ for all states s ∈ St
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New Markov Model

New Markov Model II

Cost function:

ct(s, θt) = γ(st , θt) + r δ(st , θt−1, θt)

• γ: Goodness of fit test

• δ: Penalty on changes from previous model selection

• r ≥ 0: Scaling factor used to balance fit and penalty
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New Markov Model

Example

Example:

χ2 (θt | ht−1, xt) + r
(
1− exp

{
−λ

∣∣E [Pθt | ht−1, xt ]− E
[
Pθt−1

∣∣ ht−1, xt
]∣∣}) ,

where r , λ ≥ 0.

• γ(st , θt) := χ2 (θt | ht−1, xt)

• δ(st , θt−1, θt) := 1− exp
{
−λ

∣∣E [Pθt | ht−1, xt ]− E
[
Pθt−1

∣∣ ht−1, xt
]∣∣}
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New Markov Model

Illustration

Dynamic Optimization Model:

s0 = x0
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New Markov Model

Illustration

Dynamic Optimization Model:

s1 = x1

a1 = �⇤
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New Markov Model

Illustration

Dynamic Optimization Model:
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New Markov Model

Illustration

Dynamic Optimization Model:

s3 = x3
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Lookahead Methods

Look Ahead Methods

Introducing Exogenous Information Via

Lookahead Methods
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Lookahead Methods

Lookahead Methods I

Lookahead Methods:

• At time t we have access to forecast random variables:

X̂ t
t+1, . . . , X̂

t
t+h

• We assume these are discrete approximations to Xt+1, . . . ,Xt+h

• Each forecast induces a discrete probability measure on S

We expect the forecasts to be finite random variables with few atoms

This has the effect of simplifying calculations, but at the expense of rough
approximations.
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Lookahead Methods

Lookahead Methods II

Basic lookahead method:

Step 0 Initialization:

Step 0a Initialize v t(s) for all time periods t and all s ∈ S.
Step 0b Choose an initial state s1

0 .

Step 1 For t = 0, . . . ,T do:

Step 1a Update the state variable: observe a value xt of the stochastic process, let
st be obtained from xt and model selection at t − 1, and get forecasts
X̂t+1, . . . , X̂t+h.

Step 1b Solve
v̂t = min

at∈At (st )
{ct(st , at) + E [v̄t+1 | st , at ]} ,

by solving a stochastic optimization problem. Let at be the obtained optimal
solution to the minimization problem.

Step 1c Update the value function approximation v̄t :

v̄t(s) =

{
v̂t , if s = st ,

v̄t(s), otherwise.

Step 2 Return the value functions {v̄t | t = 0, 1, . . . ,T}.
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Lookahead Methods

Lookahead Methods III

Basic Monte Carlo Algorithm:
Step 0 Initialization:

Step 0a Initialize v 0
t (s) for all time periods t and all s ∈ S.

Step 0b Choose an initial state s1
0 .

Step 0c Solve the problem the previous method and denote the resulting value
function approximations v̄ 0

t , t = 0 . . . ,T .
Step 0d Set n = 1.

Step 1 For t = 0, . . . ,T do:
Step 1a Update the state variable: Observe a value xn

t of the stochastic process, let
snt be obtained from x t

n and model selection at t − 1, and get forecasts
X̂ n

t+1, . . . , X̂
n
t+h.

Step 1b Solve
v̂n
t = min

at∈At (snt )
{ct(snt , at) + E [v̄t+1 | snt , at ]} ,

as before. Let ant be the obtained optimal solution to the minimization
problem.

Step 1c Update the value function approximation v̄n−1
t :

v̄n
t (s) =

{
(1− αn−1)v̄n−1(s) + αn−1v̂

n
t , if s = snt ,

v̄n−1
t (s), otherwise.

Step 2 Let n = n + 1. If n < N, go to Step 1.
Step 3 Return the value functions

{
v̄N
t

∣∣ t = 0, 1, . . . ,T
}

.
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Numerical Results I

Numerical Results I

Numerical Results I
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Numerical Results I

Estimation Techniques I

Estimation Techniques I:

• Initial test: Natural Gas Futures Contract 4 - times series (RNGC4), 1999 –
2013.

• Test approximate dynamic programming method (MSE ) over 1 to 10 days
forecast window, comparing the calibration of machine learning algorithms
used for regression and classification:
• Support vector machine (SVM)
• Random forests (RF)
• ARIMA
• Logistic regression (LR ) – Benchmark

• 2nd test: Crude Oil Spot (WTI), Aug. 2015 – Jan. 2016.

• We made two main tests by using approximations to “futre” WTI Spot on
different time windows:
• Actual values + random white noise with increasing variance
• Actual values + white noise + increasing bias
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Numerical Results I

Numerical Results I

Energy Time Series
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Numerical Results I

Numerical Results I

3.25

3.35

3.45

3.55

3.65

3.75

3.85

3.95

Simulation Test

WTI Spot Benchmark Dynamic ARIMA Dynamic SVM Dynamic RF Dynamic CART
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Numerical Results I

Numerical Results I

Model MSE

Benchmark 0.001116097
ARIMA 0.000320973
SVM 0.000776309
RF 0.000197873
CART 0.000476187

Noise Variance

Model 0.001 0.01 0.05 0.1 0.5 1
ARIMA 0.0003227 0.000389 0.001943 0.004214 0.008405 0.007514
SVM 0.000776849 0.000818 0.002475 0.008127 0.099774 0.16513
RF 0.000175392 0.00023 0.001843 0.003496 0.007223 0.008425
CART 0.000483638 0.000504 0.002376 0.006527 0.023588 0.024053

Benchmark 0.001116097

Model RMSE

Unbiased Random Noise External Forecast Test
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Numerical Results I

Numerical Results I

ARIMA Baseline 490.6124
RF Baseline 502.5576
CART Baseline 967.2576

0.001 0.01 0.03 0.05 0.1 0.5 1 2
ARIMA 384.0882 380.7184 379.9081 373.224 380.9279 386.4873 473.5217
RF 28.16006 30.8183 36.77366 45.00305 56.97973 195.9457 282.2603 389.0374
CART 6.680402 29.53345 46.15347 64.68325 147.4693 497.2315 725.8215 863.787

ARIMA Baseline 627.327
RF Baseline 804.8075
CART Baseline 1588.515

0.001 0.01 0.03 0.05 0.1 0.5 1 2
ARIMA 586.0408 586.1985 586.4885 587.7807 590.063 624.0278 705.4027
RF 71.76113 87.90271 117.1728 146.3925 199.0221 424.4266 528.3886 618.359
CART 12.98331 65.70607 135.9031 240.7952 369.7038 913.2118 1188.266 1422.569

Biased Random Noise External Simulation: 10 and 50 Days Windows
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Numerical Results I

Numerical Results 2

Numerical Results 2
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Numerical Results 2

Estimation Techniques II

Estimation Techniques II:

• 3rd test: Crude Oil Spot (WTI). Test approximate dynamic programming
method over 1, 5, and 5 days forecast window, using different ML dynamic
techniques with actual + white noise as “future” data:

• Support vector machine (SVM)

• Classification and regression trees (CART)

• ARIMA

• Logistic regression (LR ) – Benchmark

• 4th test:SVM futures WTI and SVM sparse “future” data on WTI spot.
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Numerical Results 2

Numerical Results II

WTI Spot
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Numerical Results 2

Numerical Results II

1-Day Forecast
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Numerical Results 2

Numerical Results II

1-Day Forecast Error

R. Collado (Stevens) Learning Time Series and Dynamic Programming September 10, 2019 27 / 34



Numerical Results 2

Numerical Results II

5-Day Forecast
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Numerical Results 2

Numerical Results II

10-Day Forecast
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Numerical Results 2

Numerical Results 2.2

Numerical Results 2.2

SVM – CART Analysis
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Numerical Results 2

Numerical Results II.2

SVM 15 Days Window
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Numerical Results 2

Numerical Results II.2

CART 15 Days Window
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Numerical Results 2

Numerical Results II.2

SVM 20 Days Window
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Numerical Results 2

Numerical Results II.2

CART 20 Days Window
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Numerical Results 2

Numerical Results II.2

SVM 25 Days Window
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Numerical Results 2

Numerical Results II.2

CART 25 Days Window
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Numerical Results 2

Numerical Results II.2

SVM 30 Days Window
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Numerical Results 2

Numerical Results II.2

CART 30 Days Window
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Numerical Results 2

Numerical Results 2.3

Numerical Results 2.3

WTI Futures – Sparse SVM Analysis
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Numerical Results 2

Numerical Results II.3

WTI Futures
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Numerical Results 2

Numerical Results II.3

WTI: |Futures− Spot|
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Numerical Results 2

Numerical Results II.3

SVM Futures
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Numerical Results 2

Numerical Results II.3

SVM Futures Error Comparison
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Numerical Results 2

Numerical Results II.3

SVM Sparse Forecast
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Numerical Results 2

Numerical Results 3

Numerical Results 3
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Numerical Results III

Estimation Techniques III

Estimation Techniques III:

• Test our approximate programming dynamic method comparing the
calibration of two machine learning algorithms used for regression and
classification: support vector machine (SVM) and random forests (RF).

• For regression analysis:
• Support vector regression (SVR): minimizes a loss function using only the

most relevant values.
• Random forests for regression (RFR): explores a large search space based on

random selection of its features and samples.

• External forecast function for daily data of WTI log returns: 1 month WTI
futures price at the end of every month.

• Training & test dataset: 15 lags of the dependent variable and technical
indicators:
• Price indicators: Simple moving averages with 10 and 20 days.
• Momentum indicators: Relative strength index with 10 and 20 days, and the

moving average convergence divergence.

• The test sample includes the forecast function.
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Numerical Results III

Numerical Results III

WTI log return and forecasts by ARMA(1,1), support vector regression (SVR), and the
approximate dynamic programming SVR (SVR-ADP) for June and July 2014.

R. Collado (Stevens) Learning Time Series and Dynamic Programming September 10, 2019 34 / 34



Numerical Results III

Numerical Results III

WTI log return and forecasts by ARMA(1,1), random forest for regression (RFR), and
the approximate dynamic programming RFR (RFR-ADP) for June and July 2014.
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Numerical Results III

Numerical Results III

Root mean squared error (RMSE) of ADP and static (benchmark) methods.
SVR, RFR, and x10 stand for support vector regression, random forest for regression,
and 10 times 40 folds cross-validation respectively.
The error bars represent standard error. RMSE mean differences of SVR-ADP and
RFR-ADP in relation to their static versions and ARMA(1,1) and CART are
statistically significant with 99% confidence level .
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Numerical Results III

Numerical Results III

Matthews correlation coefficient of ADP and static (benchmark) methods. SVM and
RF stand for support vector machine and random forest respectively. The error bars
represen standard error. MCC mean differences of SVM-ADP and RF-ADP in relation
to their static versions and CART are statistically significant with 95% conf.level.
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Numerical Results III

Numerical Results III

Test error of ADP and static (benchmark) methods. SVM and RF stand for support
vector machine and random forest respectively. The error bars represent standard
error. Test error mean differences of SVM-ADP and RF-ADP in relation to their static
versions and CART are statistically significant with 95% confidence level.
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