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Portfolio Optimization

• Classical Portfolio Optimization comes in two flavors

• Universal Principles for optimization, e.g., Kelly criterion

• Taking the preferences (or risk aversion) of the agent into
account:

• Classical: The preferences are given by a utility functions

• Goes Back to D. Bernoulli (1738), axiomatization by Von
Neumann–Morgenstern, long strain of financial mathematics
literature starting with Merton
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Bernoulli

Figure: Bernoulli’s original utility function
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Portfolio Optimization

• Criticism:

• Rational utility functions do not take into account the actual
preferences of people (Kahnemann–Tversky, Quiggin,...)

• Utility functions are not convex, rare extreme events are not
adequately considered (Choquet integrals)

• Should utility functions be descriptive or prescriptive?
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Portfolio Optimization

• Criticism:

• Utility functions (or risk aversion) is very hard to measure for
practical purposes

• How to estimate? Are estimates consistent?
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Distribution Builder

• Investors are notoriously bad in estimating their utility function

• Try instead to get more direct information from the agent

• Specifically, for terminal time portfolio optimization let the
agent directly choose the desired distribution of terminal
wealth that is reachable with given initial capital

• Distribution builder approach (Goldstein, Sharpe & Blythe;
Goldstein Johnson and Sharpe; Monin)
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Distribution Builder

Figure: Philosophy of the Distribution Builder (Source: Sharpe)
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Distribution Builder

Figure: An implementation of the Distribution Builder (Source: Sharpe)
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The cost efficiency principle

Idea

• We have to find the cheapest hedging strategy that produces
at terminal time the required distribution.

• Thus, for given F , in a complete market, we try to solve

inf
X„F

E
“

ξX
‰

“ inf
X„F

cpX q

for pricing kernel ξ and replication pricing functional cp¨q

• Moreover, if ξ has a continuous distribution,

X ˚ “ arg min
X„F

E
“

ξX
‰

“ F´1
`

1´ Fξpξq
˘

by the Fréchet-Hoeffding bounds
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Rationalizingn of Investor’s Behavior

• In a complete market we can always find a utility function U
such that X ˚ is the optimal portfolio for expected utility
maximization under U:

• We have by cost efficiency and duality

F´1
`

1´ Fξpξq
˘

“ X ˚ “ pU 1q´1pλξq

• Thus for Upxq “
şx
c F

´1
ξ

`

1´ F pyq
˘

dy the portfolio X ˚ is
optimal (Bernard, Chen, Vanduffel)
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Consumption

• Can this approach generalized to incorporate consumption?

• Naive approach: Given desired a desired marginal distributions
of consumption stream C1, C2, . . .Cn, can we determine the
price and hedge necessary

• Answer: Yes, just iterate the terminal market approach.
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Consumption

Downside: All random variables are monotone functions of the
pricing kernel and thus serially correlated

vs.

t “ 1 t “ 2 t “ 3
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Consumption

• This might be not what an agent ones (who might hope that
under-performance at one time is offset the next).

• More sophisticated approach: Let agent choose the joint
distribution (or the copula additionally to the marginals)

• Existence of random variables corresponding to the joint
distribution can be guaranteed using distributional transform
(à la Rüschendorf) for discrete consumption

• Problem for continuous consumption stream so far unsolved
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Consumption

• Practical implementation: use Gaussian or Clayton copula

Figure: Bivariate Clayton Copula (Source: Ruppert)

• Generate distribution sample, calculate sum; generate pricing
kernel sample; order them antimonotonically

c11 c21 ... cd1
řd

i“1 ci1 ξ1
...

...
...

...
...

...

c1n c2n ... cdn
řd

i“1 cin ξn
Ò Ó
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Incomplete market

• One might ask how dependent these results are on the
assumption of a complete market

• To do so, one has to establish a cost efficiency principle for
incomplete markets

• The näıve guess would be that the optimizer X ˚ is a solution
to

inf
X„F

sup
ξPΞ

E
“

ξX
‰

“ inf
X„F

cpX q

where the cost is given by the superhedging price
cpX q “ supξPΞ E

“

ξX
‰
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Incomplete market

• One might ask how dependent these results are on the
assumption of a complete market

• To do so, one has to establish a cost efficiency principle for
incomplete markets

• The näıve guess would be that the optimizer X ˚ is a solution
to

inf
X„F

sup
ξPΞ

E
“

ξX
‰

“ inf
X„F

cpX q
/////////////////////////////////

where the cost is given by the superhedging price
cpX q “ supξPΞ E

“

ξX
‰

• That’s wrong!
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Incomplete market

• We have to incorporate superhedging, over all pricing kernels
ξ P Ξ

• But how?
inf
X„F

sup
ξPΞ

E
“

ξX
‰

or
sup
ξPΞ

inf
X„F

E
“

ξX
‰

or are they even equivalent?
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Incomplete Market

It turns out, the correct answer is

sup
ξPΞ

inf
X„F

E
“

ξX
‰

(1)

Proposition

Assume that that the superhedging cost of some X „ F is finite.
Then (1) has a unique solution pξ˚,X ˚q and if the optimal pricing
kernel ξ˚ has a continuous distribution, X ˚ can be expressed as

X ˚ “
`

F´1 ˝ p1´ Fξ˚q
˘

pξ˚q
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Incomplete Markets

• How about
inf
X„F

sup
ξPΞ

E
“

ξX
‰

?

• Does a minimax principle hold?

sup
ξPΞ

inf
X„F

E
“

ξX
‰ ?
“ inf

X„F
sup
ξPΞ

E
“

ξX
‰

Distribution Builder S. Sturm



Distribution Builder Complete Markets Consumption Incomplete Markets

Incomplete Markets

• How about
inf
X„F

sup
ξPΞ

E
“

ξX
‰

?

• Does a minimax principle hold?

sup
ξPΞ

inf
X„F

E
“

ξX
‰ ?
“ inf

X„F
sup
ξPΞ

E
“

ξX
‰

this set is not convex
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Convexification

Have to convexify: Denote the convex closure (wrt the
topology of convergence in probability) of F -distributed
random variables by

convpF q :“ conv
` 

X „ F
(˘L0

Proposition

We have that (Žitković; Bank & Kauppila)

sup
ξPΞ

inf
X„F

E
“

ξX
‰

“ sup
ξPΞ

inf
XPconvpF q

E
“

ξX
‰

“ inf
XPconvpF q

sup
ξPΞ

E
“

ξX
‰

ď inf
X„F

sup
ξPΞ

E
“

ξX
‰
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Convexification

Note: It turns out that we can say more if we assume F to be
integrable: We have for distributions with support bounded
from below

F is integrable
ðñ

convpF q is uniformly integrable
ðñ

convpF q is bounded in probability
ðñ

convpF q is convexly compact
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Convexification

Proposition (He, Tang & Zhang)

Assume that the probability space is a standard Borel space. Let
X P L0pΩ,F ,Pq and F be its cdf and assume that X is integrable.
Without additional assumptions on the probability space,

convpF q Ă
 

Y P X : Y ĺcx X
(

Furthermore if the probability space is atomless then

convpF q “
 

Y P X : Y ĺcx X
(

( Here Z ĺcx X ˚ means that Z is smaller than X ˚ in convex order,
i.e., for all convex functions v ErvpZ qs ď ErvpX ˚qs. )
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Incomplete market

Theorem
The price to superhedge an integrable cumulative distribution
function F is given by

inf
XĺcxF

cpX q. (2)

The optimizer X ˚ provides at least the same expected utility for
any concave utility function.
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Notes

• In general we have a strict inequality,

sup
ξPΞ

inf
X„F

E
“

ξX
‰ p˚q
“ sup

ξPΞ
inf

XPconvpF q
E
“

ξX
‰

“ inf
XPconvpF q

sup
ξPΞ

E
“

ξX
‰

ă inf
X„F

sup
ξPΞ

E
“

ξX
‰

• Note that while (*) denotes an equality of the value functions,
the optimizers do not agree in general.
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Conclusions & Limitations

• We have proved a cost-efficiency principle for consumption in
complete markets and for terminal wealth in incomplete
markets

• With this, results from complete markets relying on cost
efficiency can be carried over to incomplete markets. In
particular, we can implement the distribution builder.

• Condition that optimizer ξ˚ has a continuous distribution is
hard to check in practice

• If all pricing kernels are uniformly absolutely continuous
• Use model specific tools to prove it in concrete examples
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Thank you!

Thank you!
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Example

(Counter-)example for minimax without convexification:

Mixture SV model:

St “ s0e
σWt`pµ´

1
2
σ2qt , σ “

!

σH prob. p
σL prob. 1´ p

Pricing kernels:

ξq “
q

p
E
ˆ

´

ż ¨

0

µ´ r

σH
dWt

˙

T

1ltσ“σHu

`
1´ q

1´ p
E
ˆ

´

ż ¨

0

µ´ r

σL
dWt

˙

T

1ltσ“σLu

Choose F „ ST
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Example

• inf
X„F

sup
ξPΞ

E
“

ξX
‰

has ξ˚ “ ξ0 or ξ˚ “ ξ1

• However, for sup
ξPΞ

inf
X„F

E
“

ξY
‰

we have
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Figure: Counterexample
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