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Introduction
Momentum strategies have steadily gained pop-

ularity in recent years. There are actually two
distinct momentum strategies: cross-sectional mo-
mentum and time-series momentum. The Carhart
momentum factor commonly referenced in Fama-
French literature is cross-sectional momentum. Stocks
are ranked cross-sectionally at a point in time based
on their last 12 months of returns [1]. For time-
series momentum, the recent moving average of an
asset’s return is compared with a longer history of
its moving average. This paper will focus on the
time-series momentum strategy.

The paper by Moskowitz, Ooi and Pedderson
[2], talks about TSMOM as a strategy that is perva-
sive across many asset classes. They claim that the
strategy provides diversification in bad times. This
is confirmed by several other authors who show
both theoretically and empirically that the return
profile of momentum is convex, similar to a strad-
dle option. Because the strategy generates positive

returns in good times and hedges in bad times, mo-
mentum is considered a market anomaly due to
behavioral reasons rather than a risk premium [3].

In this paper, we investigate some ways to repli-
cate time series momentum (TSMOM) using at the
money call/put options and straddles and discover
insights that will help risk manage these strategies.
We investigate the distribution of TSMOM returns
and note the implications it has from a mean vari-
ance utility perspective and also for traditional risk
measures like VaR and CVaR. We also contrast its
behavior in different volatility regimes.

The rest of the paper is organized as follows:
Section 1 will talk about the data and sources. Sec-
tion 2 will talk about the construction of four port-
folios prescribed in the problem statement. We
report their characteristics and provide some anal-
ysis around them. We will also explore what are
the implications for momentum. Section 3 provides
an analysis of the risk embedded in momentum
portfolios and talk about how this fits into a tra-
ditional Value at Risk (VaR) and Mean Variance
(MV) framework. Finally, Section 4 describes the
enhancements that we provide to the momentum
strategy itself and to the calculation of VaR.

1. Data
We obtained the following data from Bloomberg:

implied volatility for at-the-money calls and puts,
S&P 500 total index (including dividends), S&P
500 price index (ex-dividends). We use approxi-
mately 12 years of data, beginning June 2005 and
ending August 2017. In order to build the volatility
surface, we choose the 30-day and 90-day implied
volatility for 90%, at-the-money and 110% money-
ness. From the implied volatility, we used linear
interpolation to construct a volatility surface along
the dimensions of moneyness and time to maturity.

The S&P 500 total index is used to calculate
both the moving-average-cross-over signals as well
as the returns of the momentum portfolio since we
are directly investing in the underlying and will
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receive dividends. The S&P 500 price index is used
to price options and calculate the returns of the
option strategies, since we do not receive dividends
for options.

2. Momentum using Options
This section describes the four portfolios that

the problem statement asks us to build. The port-
folios are based on 60-day moving average (MA60)
and 120-day (MA120) moving average of the S&P500
index. If MA60 > MA120, the current trend is posi-
tive, and we would want long exposure to the under-
lying. Similar logic follows if the trend is negative.
Throughout this paper, we make the following as-
sumptions: no transaction cost or financing cost,
fractional holdings allowed and continuous range
of option strike and maturity.

Figure 1. 60 and 120-day moving averages

• The momentum portfolio consists of being
long one unit of the index when MA60 >
MA120 and being short one unit when MA60 <
MA120. Henceforth, we will call this TSMOM
Strategy.

• The first options strategy uses at the money
(ATM) call and put options. If MA60 >MA120,
we buy one ATM 90-day call and if MA60 <
MA120, we buy one ATM 90-day put; we re-
balance daily. Henceforth, we will call this
the LCP (Long Call Put) Strategy.

• We interpret the second options strategy as
buying a 90-day ATM straddle at the begin-
ning, rebalanced daily. Henceforth, we will
call this the LS (Long Straddle) Strategy.

• For the third options strategy, we buy one
90-day ATM straddle at the beginning, val-
ued using the implied volatility interpolated
from volatility surface. We then delta hedge
to 0 and rebalance the hedge daily. We roll
the straddle over once the straddle matures.
Henceforth, we will call this SRB (Straddle
Rebalance) Strategy.

• An additional portfolio that we build is very
similar to LCP, but instead of going long one
call we go short a put and instead of long one
put, we go short one call. Henceforth, we
will call this SCP (Short Call Put) Strategy.

This is summarize in Table 1. The next subsec-
tion provides some summary statistics on the index,
the TSMOM portfolio, and the four portfolios that
we construct.

Acronym Strategy

TSMOM Time Series Momentum
LCP Long Call Put
LS Long Straddle
SRB Straddle Rebalance
SCP Short Call Put

Table 1. Strategies

2.1 Basic Analysis
We tabulate some summary statistics for the raw

returns of the four portfolios that we constructed
in Table 2. Particularly, we look at the first four
moments of the return distribution and the Sharpe
ratio.

The index, TSMOM, LCP and SCP have posi-
tive returns while the straddle strategies have neg-
ative returns. This makes sense because straddle
strategies are short implied volatility and long re-
alized volatility. This generates consistent nega-
tive returns due to the volatility risk premium [4].
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Figure 2. Five portfolio cumulative return

Index TSMOM LCP LS SRB SCP

Ann Ret (%) 9.93 6.35 67.23 -28.51 -20.73 110.22
Vol (%) 19.35 19.35 209.17 74.48 100.21 253.56
SR 0.51 0.33 0.32 -0.38 -0.21 0.43
Skew -0.10 -0.15 0.75 1.95 4.14 -1.00
Kurtosis 11.81 11.80 5.13 9.00 46.74 4.15
Max 0.12 0.09 1.15 0.40 1.10 0.50
Min -0.09 -0.12 -0.62 -0.15 -0.21 -1.45

Table 2. Summary statistics

TSMOM has slightly negative skew as shown in
Table 2.1

Of the portfolios prescribed in the problem state-
ment, LCP has the best performance in terms of
absolute return. However, this is a highly levered
strategy since it uses options. On a risk-adjusted
basis, assuming a risk-free rate of 0%, the TSMOM
portfolio has the highest Sharpe ratio of 0.33. It is
important to note that all of these strategies under-
perform the index in terms of risk adjusted returns,
which has a Sharpe ratio of 0.51.

As seen in Table 2 and Figure 3 it is clear that
the LCP and SCP have very high correlation with
TSMOM. Also, when we condition on being long or
short, we see that the correlations of LCP and SCP
are positive and negative respectively. This strenght-
ens our claim that LCP and SCP are pretty close
to momenntum. It is expected due to the payoff
structure: when the momentum signal works, LCP

1This is consistent with the data that AQR capital
has released for the original Time Series Momentum
paper on its website. The data can be accessed here:
https://www.aqr.com/library/data-sets/
time-series-momentum-original-paper-data
The skew of the TSMOMeq series that they construct is -0.15.

Index MOM LCP SCP LS SRB

Index 1 -0.28 -0.21 0.22 -0.70 -0.60
MOM 1 0.92 0.82 -0.11 -0.16
LCP 1 0.82 0.00 -0.07
SCP 1 -0.55 -0.54
LS 1 0.82
SRB 1

Table 3. Correlation Matrix

Figure 3. Three year rolling correlations

has the same payoff as TSMOM and SCP profit is
capped by option premium; when it does not work,
SCP has the same payoff as TSMOM and the loss
of LCP is capped by option premium. Hence we
regard them as a levered version of momentum.

Observing the cumulative returns series in Fig-
ure 2, it is quite interesting that all the options strate-
gies crash. For the straddle strategies, this makes
perfect sense due to the highly negative returns cou-
pled with high leverage. For the SCP and LCP
strategies, we make an argument based on their sim-
ilarity to momentum. Jusselin et al. (2017) [3] find
that momentum is highly sensitive to leverage. Un-
der the theoretical model that the asset price follows
geometric Brownian motion with trend, they show
that additional leverage beyond a certain optimal
leverage ratio starts decreasing the P&L. Moreover,
the probability of ruin increases rapidly from near
0% to near 100%. This is directly observed in our
empirical results.

Expanding on the idea of LCP and SCP being
a levered version of momentum, if we control for
option beta, the strategies look very much like mo-
mentum. The beta of a call option was computed in

https://www.aqr.com/library/data-sets/time-series-momentum-original-paper-data
https://www.aqr.com/library/data-sets/time-series-momentum-original-paper-data
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Black and Scholes (1973)
[5] as:

βcall =
S

Pcall
∆call ·βS (1)

where Pcall is the price of the call, S is the price
of the underlying (S&P 500), ∆call is the delta of
the call and βS is the beta of the underlying, which
is equal to 1 for the S&P 500 by definition. The
intuition behind this measure is that it is exposure
per cost. We calculate the cumulative return of the
LCP and SCP index after scaling the daily return
by the absolute values of the beta.

The reason to do so is that it brings the ∆ expo-
sure to ±1, so that its return is comparable to the
momentum portfolio. The difference then comes
from exposure of the options to the other Greeks
that are not present in the momentum portfolio. One
way to neutralize these exposures is to sell 1/2 LS
for every LCP unit, which effectively reduces to
holding ±1/2 a call option and ∓1/2 put, which is
then equivalent to holding ±1/2 unit of the index,
or holding 1/2 TSMOM. We obtain that the β of
the call and put options is roughly 20. The scaled
series have been plotted in Figure 4

Figure 4. Beta scaled option strategies

As seen clearly in Figure 4, LCP and SCP are
very similar to TSMOM after they have been scaled
by option β , and the difference comes from the
non-zero Greeks.

Looking next at the distribution of the returns,
we see that none of these portfolios are close to
being normal. Plotting the QQ-plot for all of them,
this becomes very clear. TSMOM and the index

Figure 5. QQ-Plots

have very high excess kurtosis while LCP and SCP
have high skew – positive and negative respectively.

The intuition behind skew of LCP and SCP is
that LCP is levered on the upside (due to the non-
linear nature of the call/put options), as seen in Fig-
ure 6 [6]. When the momentum indicator works, the
option provides leverage and when it does not, the
losses are capped by the option premium – hence
the positive skew.

Another notable observation is the low corre-
lation of LS and SRB with TSMOM. The major
reason is that the long straddle bets on volatility
without regard to price movement direction. In
contrast, TSMOM bets on direction based on the
assumption that future price movement direction is
the same as the observed trend. And that explains
the low correlation. The major difference between
LS and SRB is delta hedging. When the stock price
moves up, the option delta increases which leads
to a sell-off of stocks to neutralize delta and vice
versa. In other words, the delta hedging position
is akin to buying low and selling high, which is
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the opposite of momentum. This is why the SRB
correlation with TSMOM is slightly lower than the
LS correlation.

The literature on trend following strategies claims
that long term momentum/trend following strate-
gies have a convex payoff over a long term. Since
our strategies rebalance frequently, our results di-
verge from this observation. Also, Jusselin et. al
have shown that shorter term signals do not show
as much convexity as longer-term moving signals
[3]. We are using 2-month and 4-month moving
averages, which is a shorter-term signal. Another
possible reason is that there are idiosyncrasies in the
sample period of our data. We use only the past 12
years of data, while many of the empirical studies
look at a much longer term.

If we were to pick one strategy that best repre-
sents TSMOM return distribution out of all these
strategies, we would pick a delevered SCP because
it has very high correlation to TSMOM, has nega-
tive skew and some excess kurtosis.

Figure 6. Non-linear payoff (from CBOE 2018)

2.2 Implications for Momentum
In this section, we explore the implications of

our findings for momentum strategies. For analyz-
ing TSMOM, we start by fitting a regime-switching
model that was introduced in by Hamilton in [7].
We believe that the returns will have distinctive be-
havior under different regimes and propose a simple
regime-switching model

rt = µst +σst εt , (2)

where rt is the daily return of S&P 500 total index,
st = 0,1 is the regime indicator, which is a time-
homogeneous Markov chain, εt follows standard

Value (Ann.) tstat

µ1 13.4% 5.721
µ2 -15.1% -1.266
σ1 10.8% 18.844
σ2 31.7% 14.791

Table 4. Parameter of the regimes

High Vol Low Vol

Cum Ret -45% 211%
SR -0.44 1.13
Volatility (Ann.) 35% 11%

Table 5. TSMOM returns in Vol Regimes

normal distribution, and µst and σst is the mean and
volatility at state st respectively.

From the empirical study by Hardy [8], the
model performance of a two-state regime-switching
model for equity indices is good and increasing
the number of states does not improve the perfor-
mance significantly. Therefore, we adopt a two-
state regime model. Observing the volatilities, we
can say that one is low-volatility state and the other
is high-volatility state.

We assume that the process is in the high-volatility
state when the smoothed probability of being in
this state is greater than 80%. Table 5 shows that
TSMOM does very well in the low-volatility regimes
and under-performs in high-volatility regime. This
is consistent with what has been reported by Pet-
tersson (2014) [9].

Another piece of analysis we did is to regress
the returns of TSMOM against the returns of VIX
in the different regimes. We see that the loading of
TSMOM on the implied volatility (VIX) changes
between the regimes, being short VIX in the low
volatility environment and long in the high volatility
one. It also verifies the low correlation of LS and
SRB as discussed in section 2.1, as LS and SRB are
always long volatility. The regression coefficients
and t-statistics are reported in Table 6.

To illustrate these results, we plot the rolling
1-year correlation of VIX and TSMOM along with
VIX and shade high volatility regimes in Figure 7.

The fact that momentum does poorly when volatil-
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Figure 7. Correlation of VIX and TSMOM in volatility regimes

Low Vol High Vol
Coeff. tstat Coeff. tstat

const 0.00 4.69 -0.001 -1.276
VIX -0.06 -32.12 0.054 6.642
Table 6. Regression of TSMOM on VIX

ity increases can be used to our advantage. We de-
scribe in Section 3, how we can improve the perfor-
mance of the momentum strategy by scaling using
volatility.

3. Momentum in a Portfolio
3.1 Risk Measures

Index TSMOM LCP LS SRB SCP

MaxDD (%) 55.25 31.86 100.00 99.97 99.97 101.68
MaxDD Dur (Years) 1.42 0.94 11.36 8.70 12.10 1.94
90VaR (%) -1.18 -1.22 -14.72 -4.65 -5.63 -19.26
95VaR (%) -1.81 -1.81 -20.35 -5.98 -7.61 -27.86
99VaR (%) -3.51 -3.50 -31.45 -8.43 -12.30 -47.70
90CVaR (%) -2.23 -2.20 -22.36 -6.51 -8.62 -31.98
95CVaR (%) -3.01 -2.91 -27.45 -7.73 -10.66 -41.01
99CVaR (%) -5.25 -5.02 -38.82 -10.56 -14.37 -62.33

Table 7. Risk measure values

The VaR and CVaR calculations in Table 7 are
all historical measures. In the enhancements sec-
tion, we will present VaR and CVaR based on sim-
ulations with the fitted regime-switching model.
From a risk perspective, it is clear that none of
these options strategies are a good representation
of future risk for momentum. All strategies are
highly levered and have a maximum drawdown of
close to 100%. Similarly, the VaR and CVaR are
multiples higher for all the options strategies. The

duration of the maximum drawdown is also an order
of magnitude higher for all of the portfolios with
the exception of the SCP strategy.

Delevered LCP Delevered SCP

MaxDD (%) 35.23 40.06
MaxDD Dur (Years) 1.71 1.56
90VaR (%) -1.07 -1.39
95VaR (%) -1.71 -2.19
99VaR (%) -3.77 -3.97
90CVaR (%) -2.14 -2.54
95CVaR (%) -2.94 -3.38
99CVaR (%) -5.38 -5.43

Table 8. Risk measures for delevered strategies

To get comparable risk measures, we apply the
aforementioned β delevering strategy for the LCP
and SCP portfolios. Upon delevering, we can see
that both strategies give a very good representation
of future risk for momentum under the measures of
max drawdown, duration, VaR and CVaR.

These are simply the statistical measures of risk,
but we also want to pay attention to the risk factors
for momentum. The obvious risk is trend rever-
sal, but because time-series momentum is a market
anomaly stemming from behavioral reasons, there
is always the risk that trend disappears as the market
gradually becomes more efficient. Another consid-
eration is that although TSMOM can hedge against
bad times, it is only able to capture more gradual
declines in the market. This is due to the filter-
ing problem, as the 60-day moving average is not
able to capture a sharp decline over a few days fast
enough to trade on the signal.
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3.2 Implications in Mean-Var Framework
In the classic paper [10], Markowitz (1952) lays

the foundation for what is now known as the mean-
variance (MV) framework. Investors are risk averse,
which means that for investing in any risky portfo-
lio, they want to get compensated in returns for
the risk that they’re taking [11]. In this framework,
investors care only about the mean and the vari-
ance. The optimal portfolio in a MV framework is
the one that has the highest Sharpe ratio. Hence,
we would choose TSMOM, which has the highest
Sharpe ratio.

In a later paper, Malamud (2014) [12], describes
what happens when we include non-linear type
of payments (like options) to the MV framework.
He claims that is a non-trivial problem: the non-
linearity of the payoffs introduces the problem of es-
timating higher moments of the distribution - skew-
ness and kurtosis. As described in previous sections,
TSMOM has negative skewness and positive kur-
tosis. In section 4 we will introduce two ways of
expanding the framework: Greeks efficient portfo-
lios and Mean-CVaR analysis.

3.3 Practical Constraints
In terms of implementing these strategies, let’s

start with TSMOM. This strategy has a relatively
low turnover - 20 total trades in the time horizon
studied, which translates into low transaction costs.
Because we are working with the S&P 500 index,
we have low transaction costs and a very liquid
market which can be implemented by simply buying
or selling an ETF.

For the LCP and SCP strategies, both are naked
strategies (no delta hedging with the index). Also,
for LCP we need to find sellers of options with
strikes that have extra granularity: we are buying
new ATM calls or puts everyday, each with a new
90-day maturity. This is not possible in normal
exchanges (CBOE or CME), thus we require an
OTC dealer, which it will be more expensive. It
could also be hard to realize the daily P&L since
finding a buyer for a 89-day option could be difficult.
This also applies to the straddle strategies. For the
last strategy, we have the impractical consequences
of daily hedging: transactions cost and shorting

costs.
On the other hand, the original time series mo-

mentum factor by Moskowitz et.al (2012) [2] is
constructed differently: normally we will be look-
ing for the 12-month moving average (ignoring the
most recent month) to capture the long term move-
ment and the 1-month moving average to capture
the short mean reversal . This way of building the
series have been proven to be an investing factor
that can be exploited in equities, indices, commodi-
ties, and other asset classes.

4. Enhancements to TSMOM
investing

Although the momentum generates stunning
performance, the large maximum drawdown, nega-
tive skew and excess kurtosis urges us to take care of
the risk associated to the momentum strategy. This
section explores several approaches to improve risk
management.

4.1 Vol and VaR targeting
The TSMOM that we implement has excess kur-

tosis and doesn’t beat the index in terms of Sharpe
ratio. As seen in Section 2, TSMOM tends to do
poorly in times of high volatility. We take advantage
of this information by scaling down the allocation
when the market seems to be in the high-volatility
state.

First, we try to replicate what Pedro Barroso
et al. did in their paper [13]. The core idea of
managing momentum risk that they propose is that
the realized variance of daily returns is highly fore-
castable. In order to control the risk exposure in
the momentum strategy, we scale our holdings in
the index to match a target volatility which we keep
constant over time: σtarget.

The monthly forecast σ̂2
t is computed from daily

returns in the last six months. Let {rt}T
t=1 be the

monthly returns of momentum strategy and {rd}D
d=1,

{dt}T
t=1 be the daily returns and the time series of

the trading days. Then, the variance forecast is

σ̂
2 =

21
126

125

∑
j=0

r2
dt−1− j

(3)
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Since we want to manage the risk of momentum
strategy and not just scale to amplify our positions
in times of low volatility , the factor will be capped
at 1 to limit the leverage. The scaled portfolio hold-
ing will be:

ht = min
(

σtarget

σ̂t
,1
)

(4)

The optimal portfolio using MV framework, is
[14]:

h∗ =
µ− r f

2λσ2 (5)

If we set µ−r f
2λ

= σ2
target, the result reduces to ex-

actly the volatility targeting we have done; without
the cap at 1. Another insight we get from this is
that we should increase/decrease the target volatil-
ity based on the expected return. We should take
more risk when the expected return is higher.

We set a target volatility of 10%, which is around
half of the TSMOM volatility and present the re-
sults below.

Vol scaled TSMOM TSMOM

Cum Ret 76.52% 72.42%
Ann Ret 5.69% 6.35%
Volatility (ann.) 10.33% 19.35%
SR 0.52 0.33
MaxDD -21.20% -31.86%
MaxDD Dur (year) 0.94 0.94
Skew -0.15 -0.15
Kurtosis 3.33 11.79
Max 4.32% 9.03%
Min -3.64% -11.58%
99VaR -1.87% -3.58%
95VaR -1.07% -1.81%
90VaR -0.74% -1.25%

Table 9. Targeting Volatility

The result in table [9] shows that the Sharpe
ratio improves from 0.33 for simple momentum to
to 0.52 for its volatility scaled version. The excess
kurtosis drops from 11.79 to 3.33 and the maximum
drawdown of -31.86% improves to -21.20%.

However, we did not get the same improvement
in skewnewss as Barroso et al. [13], as the left
skewness did not decrease. This is mainly because

Figure 8. Vol scaled TSMOM vs TSMOM

we apply the strategy to a different momentum fac-
tor. In the paper, they use the traditional winner-
minus-loser portfolio (cross-sectional momentum),
while we are using the time-series momentum fac-
tor explained in [2]. The skewness of our original
portfolio is small enough, -0.15, compare to the
plain winner-minus-loser’s -2.47, number reported
by Barroso et al. [13].

Scaling by VaR would output the same results
as scaling by volatility if the returns are normally
distributed. This can be seen in the following equa-
tion:

VaR = µ +σΦ
−1(α) (6)

where rt ∼ N(µ,σ2) and Φ(·) is the CDF of a
standard normal.

But, we showed that TSMOM returns are not
normally distributed. They have excess kurtosis
and also have negative skew. So, scaling by his-
torical VaR could be a useful exercise. This is the
second method we try to risk manage momentum
strategy. We calculate the daily 5% historical VaR
uisng the data from the last six months. Then we
scale the portfolio weights to 1% daily VaR and
cap the scaling at 1. So, the amount we hold in the
index (long/short) is:

hscaled =
VaRtarget

VaRt,5%
(7)

The results for the VaR targeted momentum
(targeted to 1% daily VaR) has been reported in
Table 10.

Both scaling methods provide us with improved
performance. However, in terms of picking one
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VaR scaled TSMOM TSMOM

Cum Ret 63.39% 72.42%
Ann Ret 4.55% 6.35%
Volatility(ann.) 10.13% 19.35%
SR 0.45 0.33
MaxDD -20.15% -31.86%
MaxDD Dur(years) 0.94 0.94
Skew -0.26 -0.15
Kurtosis 4.56 11.79
Max 3.91% 9.03%
Min -4.96% 11.58%
99VaR -1.79% -3.50%
95VaR -1.03% -1.81%
90VaR -0.74% -1.22%

Table 10. Targeting VaR

between the two methods, volatility-scaling will
fit better in our framework since volatility scaled
TSMOM does not increase the skewness and has
higher Sharpe ratio.

4.2 Adjusting Mean-Var Objective Function
Mean-variance optimization is a good approxi-

mation in most cases, but Cremers, Kritzman and
Paige (2003) [15] suggest that if investors have
quadratic utility, they’re indifferent to higher mo-
ments. However, higher moments become impor-
tant when there is a risk of non-survival. This is ex-
actly the case with TSMOM. The risk of TSMOM
is due to exposure to higher moments, and also we
have seen that it has large drawdowns. Thus, the
objective function must be adjusted for it.

Our first approach will be to build the frame-
work of Greek efficiency, similarly to the work of
Malamud (2014) [12]. Using a Taylor expansion,
we can decide over the number of sensitivities that
the investors want to manage and budget. Assum-
ing investors have a CRRA utility function with risk
aversion γ and we can estimate all co-movements
(covariances, co-skewness or co-kurtosis), we can
generate an optimal Greek, which would be similar
to the portfolio weights of Markowitz (1952):

Γ = γ
−1

Σ
T
t µ (8)

where Σt is a linear matrix that calculates co-
movements in terms of higher moments. Malamud

(2014) [12] found that this way of budgeting risk
present higher Sharpe ratio than a classical MV
framework.

The second approach for handling the risks as-
sociated with doing a naive MV framework is do-
ing a Mean-CVaR [12]. Because options returns
present non-linear payoff, and our TSMOM also
have non-normal returns, we need to use asymmet-
ric risk measures. Between VaR and CVaR as tail
risk measure, CVaR is a coherent risk measure [12].
Hence, according to Xiong and Idzorekin (2010)
[16], this method will prefer to choose assets with
positive skewness, small kurtosis, and low variance.
From this we can create a new performance ratio:
the STARR ratio (Stable Tail Adjusted Return Ra-
tio), first introduce by Martin, Rachev and Siboulet
(2003) [17]:

STARR(w) =
rp(w)− r f

CVaRα

(9)

The results for the STARR for our strategies are
reported in Table 11, assuming 0.0% as the risk-free
rate:

TSMOM LCP LS SRB SCP

90-STARR 2.97 3.01 -4.38 -2.40 3.45
95-STARR 2.24 2.45 -3.69 -1.94 2.69
99-STARR 1.30 1.73 -2.70 -1.44 1.77

Table 11. STARR values for different levels of
confidence

Using this framework, the best strategy among
the 4 presented in the problem statement is LCP,
and we can observe how non-normal the distribu-
tions are and how they differ in the tails. TSMOM
is penalized for having negative skewness, while
the LCP strategy is rewarded for having positive
skewness.

4.3 Regime-switching VaR
Due to the distribution of TSMOM, we expect

that historical VaR understates the risk exposure to
extreme event. As discussed in section 2.2, the clus-
ter of low-volatility and high-volatility returns in-
spires us to re-evaluate VaR under regime-switching
model.
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To evaluate the VaR measure, we adopt the clas-
sical rolling forecast, which will estimate the model
parameters in a specified lookback period and eval-
uate VaR measure for the future periods and iter-
ate the procedure by rolling the lookback period
one year forward till the end of the historical data.
Exception number test is used to evaluate VaR per-
formance. The test reports the number of realized
return bigger than VaR and it is one of the most pop-
ular because the Basel Committee[18] has adopted
it to categorize the internal models into different
zones (green, yellow, red). As the regime-switching
model requires long time series to recognize dif-
ferent regimes, we used 8-year historical returns in
the lookback period to estimate model parameters,
and simulate one-year daily return of the index and
calculate momentum returns based on Portfolio 1
construction. And 95% VaR is calculated based on
terminal simulation returns and we call it RS VaR
(Regime-switching VaR) and the exception test is
performed in the following year. For comparison,
historical VaR is also computed in the estimation
period.

Year Hist No. % RS No. %
VaR Exceed Exceed VaR Exceed Exceed

2008 -1.66% 46 18.2% -1.81% 39 15.4%
2009 -1.84% 29 11.5% -2.18% 24 9.5%
2010 -2.02% 13 5.2% -2.23% 9 3.6%
2011 -1.85% 22 8.7% -2.01% 17 6.7%
2012 -1.98% 4 1.6% -2.27% 3 1.2%
2013 -2.05% 2 0.8% -2.24% 2 0.8%
2014 -2.08% 3 1.2% -2.15% 1 0.4%
2015 -2.09% 5 2.0% -2.12% 4 1.6%
2016 -2.08% 6 2.4% -1.98% 6 2.4%
2017 -1.82% 0 0.0% -1.76% 1 0.4%

Table 12. 95% VaR measures in rolling forecast

For 95% VaR with 1-year realized returns (252
observations), we expect 12 exceptions but Table
12 shows that the exceptions are out of expectation
from 2008 to 2011, which is regarded as a stress-
ful period. Under such stressful period, regime-
switching VaR is prone to to correct the underesti-
mation issues by reporting less exception number
than that of historical VaR. And the results are also
consistent with what R. Kawata and M. Kijima [19]
found.

5. Conclusion
Many hedge funds and asset managers allocate

heavily to momentum strategies. These strategies
have been pretty successful. However, there is a
need for better risk management of these strategies,
given that they suffer from large drawdowns, per-
form poorly when high volatility prevails in the
market and exhibit large kurtosis with some nega-
tive skew.

We show that a simple TSMOM strategy can be
replicated using call and put options; but we need
to control for the leverage of the strategy. We ad-
dressed the issues that momentum strategies suffer
from while trying to preserve the profitability of the
strategy. We use the high persistence of volatility to
scale back our bets on momentum in high volatility
times, propose a more efficient way to calculate
VaR that takes into account the fact that there are
two volatility regimes and the behavior of momen-
tum switches in these regimes. We acknowledge
that although mean-variance framework is sufficient
in most cases, if we consider momentum as an as-
set, we need better frameworks that quantify this
risk because of TSMOM’s drawdowns. We propose
to use a CVaR optimized framework to decide our
optimal portfolio.
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