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Abstract—To investigate the relation between momentum trading 
and options strategies on the S&P 500, we implement a simple 
momentum filter known as moving-average crossover and the 
Black-Scholes option pricing formula to construct four portfolios 
over the period from January 2007 to December 2017.  Several risk 
metrics are used to quantify return performance relative to the 
S&P 500 momentum strategy. Other aspects of momentum 
trading and the associated risks are subsequently examined. 

I. INTRODUCTION  
In recent years, momentum trading strategies have increased 

dramatically in popularity. In a general sense, trading strategies 
involve identifying specific market factors and making 
assumptions about how these factors will affect the market in 
the future. For momentum, these factors are based on trends in 
an asset’s historical prices and can be found in both cross-
sectional and time-series data. Cross-sectional momentum 
assumes that the past information of one asset relative to 
another in the market will shed light on the performance of the 
asset in the future. High performing assets will continue to rise 
in value while poor performing ones will keep falling in the near 
future, typically from 3 to 12 month periods [1]. Similarly, time-
series momentum implies that the asset’s past returns can 
predict its future performance, which directly contradicts the 
efficient market hypothesis. However, solid evidence has 
shown that not only does momentum exist, but the 
autocorrelation between the asset returns is positive at the 
portfolio level and negative at the individual stock level [2]. 
This paper explores methods of capturing time-series 
momentum in the S&P 500 Index. 

 
Figure 1: S&P500 and SMAs 
 

A common method of capturing momentum is to use an 
indicator to signal a trend in an asset’s price. The investor 
should then choose a long or short position based on the 

information given by the signal. A different method of 
capturing momentum is to purchase an at-the-money straddle 
written on the asset. Investing in an index straddle is equivalent 
to buying the underlying asset when the price increases and 
selling when the price decreases. This paper implements and 
analyzes four portfolios designed to capture momentum. 

Portfolios 1 and 2 are implemented using the same signals 
but choose different methods of being long or short. The 
portfolios are long when the 60-day simple moving average 
(SMA) price of the S&P 500 exceeds its 120-day SMA 
counterpart. Conversely, the portfolios are short when the 60-
day SMA is below the 120-day SMA. Assuming momentum 
exists in the market then the idea behind these signals is simple: 
if the portfolio is outperforming its recent history, it is likely to 
continue to outperform, and vice-versa. When the market signal 
is bullish, portfolio 1 takes a long position on one share of the 
underlier while portfolio 2 takes a long position on one call 
option. When the market signal is bearish, portfolio 1 position 
is to short one share of the underlier while portfolio 2 is to long 
one put. 

Portfolios 3 and 4 are two different methods of 
implementing an at-the-money straddle. In portfolio 3, the 
strategy is to buy a new 90-day at-the-money straddle at the 
close of one day and sell that straddle at the close of the next 
day. In Portfolio 4 a 90-day at-the-money straddle is purchased, 
held until expiry, and then dynamically hedged to replicate the 
returns of Portfolio 3. 

II. IMPLEMENTATION AND METHODOLOGY 
The implementation of the given portfolios was conducted 

over eleven years, from January 1, 2007 to December 31, 2017. 
The S&P 500 data used for our analysis is the daily adjusted 
close price of ^GSPC. Figure 1 shows the S&P 500 along with 
the 60- and 120-day moving average. 

When calculating returns, it is difficult to establish a cost 
basis because the portfolios are defined in terms of a fixed 
holding of a certain amount of assets (i.e. one share), and 
sometimes the position is short. As such, the returns are 
calculated as the difference in dollar value of assets held at the 
end of two days. The returns provide an intuitive broad stroke 
of how an investor’s wealth would develop over time, given 
their participation in each portfolio.  

Portfolios 2, 3, and 4 require option prices to determine 
returns. The options written on the S&P 500 were priced using 
the Black-Scholes option pricing model and the 3-month 
Treasury Bill. 



In a Black-Scholes setting, the call price and the 
corresponding put price are defined in the following way. For 
𝑡𝑡 < 𝑇𝑇, 
 

𝐶𝐶𝐵𝐵𝐵𝐵(S,𝐾𝐾,𝜎𝜎, 𝑟𝑟,𝑇𝑇, 𝑡𝑡) = 𝑆𝑆𝑆𝑆(𝑑𝑑+) − 𝐾𝐾𝑆𝑆(𝑑𝑑−)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) 
𝑃𝑃𝐵𝐵𝐵𝐵(𝑆𝑆,𝐾𝐾,𝜎𝜎, 𝑟𝑟,𝑇𝑇, 𝑡𝑡) = K𝑆𝑆(−𝑑𝑑−)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) − S𝑆𝑆(−𝑑𝑑+) 
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S =the current trading price of the underlying asset in unit of 
currency 
𝐾𝐾 =  the strike price of the option in unit of currency 
σ  =   the annualized standard deviation of the returns of the 
underlying assets  
𝑟𝑟 =  the annualized risk-free rate of return  
𝑇𝑇 =  the time to maturity, in years 
𝑡𝑡 =  the current time, in years 
 

 
Figure 2: QQ-Plot of VXV vs. Realized Volatility 
 

In the Black-Scholes framework prices are highly sensitive 
to the chosen volatility estimate. A natural choice is the CBOE’s 
90-day Volatility Index (VXV) which is a forward-looking 
market expectation of volatility constructed using options on 
the S&P 500 Index. However, the VXV index historically 
overestimates realized volatility. Since the Vega of a call and 
put is positive, higher volatility estimates result in higher option 
prices. This implies that if the volatility is overestimated, the 
option will be overpriced, leading to lower estimation of the  
portfolio returns. This makes the VXV a poor volatility measure 
in practice. 

One approach to correct for this overestimation is to 
transform the VXV to better approximate realized volatility. 
Assuming a linear relationship between the VXV and the 
realized volatility,  a naive method is to mathematically shift the 
mean of the VXV by a constant so it equals the mean of the 
realized 90-day volatility. Although this corrects for 
overestimation, this adjustment does not lead to a better 
volatility estimate because the distribution of realized volatility 
remains right skewed compared to the adjusted VXV (see 
Figure 2). It is important to note that investors cannot know the 
true realized volatility before hand. Our inclusion of this 

measure is used to demonstrate how a more accurate volatility 
measure might perform. Developing a more complex method 
for estimating the VXV overestimation is outside the scope of 
this paper. 

 
Figure 3: Plot of VXV and 90-day Trailing Volatility 
 

A second approach is to use 90-day trailing volatility. Since 
this measure is directly tied to historical data, it more accurately 
reflects the level of volatility present in the market when 
compared to VXV. And, although trailing volatility is 
backward-looking, the measure is highly correlated (.92) with 
VXV (see Figure 3), justifying our motivation to use the 90-day 
trailing volatility as a reasonable proxy for a forward-looking 
estimate. 

III. ANALYSIS OF PROPOSED STRATEGIES 
An important result that is common across all strategies, is 

the nature of their performance relative to the S&P 500. The 
onset of the recession provides a clear illustration of how 
portfolios 2, 3, and 4 capitalize off a market environment that 
sustains directional movement. This was evidenced by a large 
divergence in returns with the S&P 500, which due to exhibiting 
strong downward pressure, provided clear moving average 
indication for the portfolios to adhere to. Furthermore, as the 
market went through a period lacking any strong directional 
movement (around 2015), the strategies all exhibited weaker 
performance characterized by a notable downturn. This is not 
unexpected however, as by definition, momentum strategies 
hinge on the presence of strong market trends preceded by a 
general influx of volatility. Further analysis of each portfolio 
using the 90-day moving average volatility is as follows. 

A. Portfolio 1: 
Intended to capture the momentum exhibited in the market, 

portfolio 1 takes a long or short position on one unit of index 
depending on the relative performance of the 60-day and the 
120-day SMA of the index: 

 
• long one unit of the index, if the 60-day SMA was 

greater than the 120-day SMA 

• short one unit of the index, otherwise 

By nature, the momentum strategy seeks to make profits 
during consistent upward or downward trends. As expected, 



portfolio 1 performed with significant gains during the long 
sustained trend at the end of 2012 to early 2015, at the end of 
which the value of the portfolio reached $1182.52. However, 
the portfolio suffered significant losses during a period of high 
volatility and no discernible trend from the middle of 2015 to 
the middle of 2016, resulting in the portfolio value getting 
reduced by half. 

Implementation Results (01/01/2007 – 12/31/2017) 

I.            SUMMARY STATISTICS FOR PORTFOLIO IMPLEMENTATION 

 
Dollar Returns 

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 S&P500 

Min -104.13 -27.77 -19.31 -42.73 -106.85 

Max 106.85 72.38 48.57 60.96 104.13 

1. Quartile -7.14 -4.18 -1.03 -1.15 -6.77 

3. Quartile 8.70 4.15 0.84 0.52 8.92 

Mean 0.32 0.29 0.26 0.02 0.37 

Median 0.63 -0.32 -0.36 -0.41 0.95 

Variance 271.85 68.00 14.00 12.79 271.82 

Standard Dev 16.49 8.25 3.74 3.58 16.49 

Skewness -0.03 1.19 3.55 4.48 -0.39 

Kurtosis 3.84 6.15 31.45 69.81 3.88 
 

II. RISK METRICS FOR PORTFOLIO IMPLEMENTATION 

 
Dollar Returns 

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 S&P500 

𝑉𝑉𝑉𝑉𝑅𝑅0.95 -26.80 -13.28 -5.90 -5.86 -26.75 

𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅0.95 -33.69 -16.72 -7.46 -7.36 -33.64 

MDD 730.72 344.01 219.91 323.30 888.62 

Duration of 
MDD(days) 277 188 213 2058 355 

 

III. DRAWDOWN FOR PORTFOLIO IMPLEMENTATION 

MMD 
Dollar Returns 

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 S&P500 

Peak 05-21 
2015 

09-28 
2015 

12-09 
2008 

12-04 
2008 

10-09 
2007 

Trough 06-27 
2016 

06-27 
2016 

10-01 
2009 

02-08 
2017 

03-09 
2009 

Cumulative 
Returns 

$1182.52 
$451.53 

$912.40 
$568.39 

$278.21 
$148.55 

$368.51 
$54.59 

$140.42 
-$748.20 

 
Figure 4: Cumulative Returns over all Portfolios 

 
Portfolio 1 involves taking substantial short positions. That 

is, over the period from January 1, 2007 to December 31, 2017, 
the portfolio will require holding a short position about 25% of 
the time. All else equal, an investor abiding to a short position 
will be more exposed to potential financial pain, illustrating that 
this strategy can burden the investor with significant risk. 

While the variance of portfolio 1 and that of the benchmark 
S&P 500 are almost identical, the average return of portfolio 1 
is noticeably smaller than that of the S&P 500 as evidenced by 
the provided risk metrics. 

 

B. Portfolio 2: 
Portfolio 2 is structured as follows: 
• long one call option, if the 60-day SMA was greater     

than the 120-day SMA 

• short one put option, otherwise 

As expected, similar to portfolio 1, portfolio 2 suffers 
significant loss during periods of high volatility and periods in 
which no discernible trends are detected. The largest peak-to-
trough decline in the value of the portfolio occurred during the 
same period. However, the standard deviation is cut in half in 
exchange for lower returns. Similar observations can be made 
for the risk metrics. 

C. Portfolio 3: 
Portfolio 3 involves constantly holding a long position on 

an ATM straddle - long an ATM call and put on the same 
underlying asset with the same maturity and the same strike 
price. An ATM straddle capitalizes on the volatility of the 
market, regardless of the direction of the movement of the 
underlying asset. By nature, a straddle has limited loss, limited 
to the premium paid, and a theoretically unlimited profit.    

Compared to portfolio 1 and 2, portfolio 3 has smaller 
returns, but smaller standard deviation. The distribution of 
return for portfolio 3 is right-skewed. As expected, portfolio 3 
outperformed portfolio 1 during the crisis, but the greatest 
decline in value is also during this same time, during which the 
portfolio lost half of its value. 



D. Portoflio 4: 
A dynamically hedged strategy involves rebalancing the 

current position according to market changes. Assuming that 
for an infinitesimal change in the underlying market 
parameters, the value of equivalent assets will change in the 
same way, replicating an ATM straddle is boiled down to the 
construction of portfolios with equivalent partial derivatives 
with respect to market parameters of interest- the Greeks. 

Portfolio 4 requires holding a straddle until maturity and 
subsequently hedging the position on a daily basis so it is 
equivalent to an ATM straddle each day. Again, replicating an 
ATM straddle is equivalent to constructing a portfolio in which 
the Greeks of the portfolio matches that of an ATM, 90-day 
straddle on the same underlying for any given day using shares 
of the underlying assets.  

The value of an ATM straddle heavily depends on the 
movement of the price of the underlying asset; as the asset price 
increases, the call option will become in-the-money while the 
put option falls out-of-money. A solid directional movement in 
the price of the underlying assets will determine whether the 
call or the put will be exercised at maturity. Accordingly, for an 
increase in the value of the underlying asset, the Delta (𝛥𝛥), or 
the change of the option’s value with respect to a change in the 
asset price, increases as the call option runs in-the-money while 
the 𝛥𝛥 of a put decreases as the option becomes out-of-money. 
Close to maturity, if the call option is to be exercised, the 𝛥𝛥 will 
grow close to 1. On the other hand, if the put option is to be 
exercised, the 𝛥𝛥 will approach -1.  

As both call and put are convex functions of the price of the 
underlying asset, the degree of convexity, or the second 
derivative of the portfolio value with respect to the price of the 
underlying asset determines the magnitude of the loss or the 
gain as the price of the underlying asset moves. Therefore, a 𝛥𝛥- 
𝛤𝛤- equivalent strategy will guarantee that as the price of the 
underlying asset moves, the loss or the gain of the replicated 
portfolio will be similar to that of an ATM straddle, ceteris 
paribus. 

Let 𝑍𝑍𝑡𝑡: the value of a 𝛥𝛥-𝛤𝛤-equivalent portfolio composed of a 
call 𝐶𝐶𝑡𝑡, a put 𝑃𝑃𝑡𝑡, some shares of the underlying asset𝛼𝛼𝑡𝑡needed 
to equate the 𝛥𝛥𝑠𝑠 and some shares of an additional asset with 
non-zero well-defined second derivative  𝛽𝛽𝑡𝑡 at time t 
∆𝑡𝑡: the 𝛥𝛥of an ATM straddle at time t 
       𝛤𝛤𝑡𝑡      :  the 𝛤𝛤of an ATM straddle at time t 
       𝐴𝐴𝑡𝑡    :  the price of the additional asset at time t 
 
𝑍𝑍𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝑃𝑃𝑡𝑡 + 𝛽𝛽𝑡𝑡𝐴𝐴𝑡𝑡+𝛼𝛼𝑡𝑡𝑆𝑆𝑡𝑡 
 

𝜕𝜕𝑍𝑍𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

=
𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+
𝜕𝜕𝑃𝑃𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+ 𝛽𝛽𝑡𝑡
𝜕𝜕𝐴𝐴𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+ 𝛼𝛼𝑡𝑡 

𝜕𝜕2𝑍𝑍𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

=
𝜕𝜕2𝐶𝐶𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

+
𝜕𝜕2𝑃𝑃𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

+ 𝛽𝛽𝑡𝑡
𝜕𝜕2𝐴𝐴𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

 

 
Set  𝜕𝜕

2𝑍𝑍𝑡𝑡
𝜕𝜕𝐵𝐵𝑡𝑡2

= 𝛤𝛤𝑡𝑡  , 

𝛤𝛤𝑡𝑡 =
𝜕𝜕2𝐶𝐶𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

+
𝜕𝜕2𝑃𝑃𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

+ 𝛽𝛽𝑡𝑡
𝜕𝜕2𝐴𝐴𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

 

𝛽𝛽𝑡𝑡 =
𝛤𝛤𝑡𝑡 − �𝜕𝜕

2𝐶𝐶𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

+ 𝜕𝜕2𝑃𝑃𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

�

𝜕𝜕2𝐴𝐴𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡2

 

Set 𝜕𝜕𝑍𝑍𝑡𝑡
𝜕𝜕𝐵𝐵𝑡𝑡

= 𝛥𝛥𝑡𝑡 , 
 

𝜕𝜕𝑍𝑍𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

=
𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+
𝜕𝜕𝑃𝑃𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+ 𝛽𝛽𝑡𝑡
𝜕𝜕𝐴𝐴𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+ 𝛼𝛼𝑡𝑡 

 

𝛼𝛼𝑡𝑡 =
𝜕𝜕𝑍𝑍𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

− �
𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+
𝜕𝜕𝑃𝑃𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

+ 𝛽𝛽𝑡𝑡
𝜕𝜕𝐴𝐴𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

� 

 
The combination of a straddle held until expiration, of 

shares of underlying assets, and of contracts of additional assets 
will be identical to holding an ATM straddle at all time in terms 
of the𝛥𝛥𝑠𝑠and 𝛤𝛤𝑠𝑠. On expiration day, the straddle becomes 
worthless, the position on the underlying and the additional 
assets is closed and a new straddle is purchased.   

Clearly, the  𝛥𝛥 - 𝛤𝛤- equivalent strategy underperforms 
portfolio 3, because of the accumulated decay in time value of 
money. In theory, a - 𝛤𝛤-𝛩𝛩 equivalent strategy would have 
performed better with a fifth asset introduced in the model to 
match the Theta (𝛩𝛩)or the change with respect to time.  

Note that the return stream on portfolio 4 is similar to that 
of portfolio 3 by nature, but exhibits returns of much smaller 
magnitude, providing evidence that extensive hedging with the 
Greeks may not be sustainable over the long run. See summary 
statistics for further support. 

E. Volatility Estimates: 
Figure 5 shows the performance of all four portfolios using 

the 90-day volatility implied by VXV. As expected, this  
measure significantly diminished portfolio returns in all 
portfolios that require option pricing. The return reduction is 
most pronounced in Portfolios 2 and 3, most likely because a 
straddle is essentially a bet that market volatility will be more 
than the market forecast. This confirms our assertion that VXV 
is an overestimate of volatility. 

 
Figure 5: Cumulative Dollar Return of 4 Portfolios using the 90-day volatility 
implied by VXV 



 
Figure 6 shows the performance of all four portfolios using 

the 90-day volatility implied by VXV adjusted to match the 
mean of the realized distribution. What is most noticeable about 
this chart when compared with the 90-day trailing volatility is 
the strong performance of Portfolio 4 after 2014. This is because 
the rate at which VXV overestimates realized volatility is not 
constant over time. In 2014 and 2015 the overestimate is much 
smaller (about 1 percentage point) than the rest of the sample 
(about 4 percentage points) and so the mean adjusted VXV 
drives strong returns in that time frame. This underscores the 
difficulty of trying to determine how much VXV is actually 
overestimating volatility. 

 
Figure 6: Cumulative Dollar Return of Four Portfolios using the 90-day 
volatility implied by VXV adjusted to match the mean of the realized 
distribution 

IV. MONTE CARLO ANALYSIS 
An important component of portfolio investment analysis is 

developing a systematic approach to forward-looking risk 
management. To establish this in practice, realistic future 
scenarios of value-driving variables need to be produced as a 
function of an underlying probability distribution and modeling 
assumptions. Thus, the framework for the model was built on 
the assumption that the future prices of the S&P 500 can be 
accurately modeled with a geometric Brownian motion with 
constant drift and volatility. From the simulated data, Black-
Scholes option prices are computed, enabling a derived 
simulation of the various trading strategies to be produced.  

 
Let 𝑆𝑆𝑡𝑡 , be the price of the underlying asset at time t.  
 

𝑆𝑆𝑡𝑡 = 𝑆𝑆0𝑒𝑒
𝜇𝜇𝜇𝜇𝑡𝑡+12𝜎𝜎𝜇𝜇𝑊𝑊𝑡𝑡 

where  
 𝑊𝑊𝑡𝑡is a standard Brownian motion 𝑊𝑊𝑡𝑡 ∼ 𝑁𝑁(0, 𝑡𝑡) 
 𝜇𝜇    is the constant historical mean of return   
 𝜎𝜎    is the constant historical volatility of return 
 
Equivalently in discretized form, 
 

𝑆𝑆𝑡𝑡 = 𝑆𝑆0𝑒𝑒
𝜇𝜇𝜇𝜇𝑡𝑡+12𝜎𝜎√𝜇𝜇𝑡𝑡𝑍𝑍 

where   
𝑍𝑍 ∼ 𝑁𝑁(0,1) 

 

The model simulates 5,000 cumulative dollar return 
outcomes for portfolio 1, 2 and 3 over a 252-trading-day period. 
Using data from January 1, 2015 - December 31, 2017, 
annualized mean and volatility of the daily log S&P 500 returns 
were calculated and used as the geometric Brownian motion 
drift and diffusion terms respectively. Then computing daily 
option prices along each simulated S&P 500 path,  a constant 3-
month risk-free rate of 1.7% was assumed along with a trailing 
63-trading-day volatility for that path’s corresponding S&P 500 
arithmetic return. From this, a fairly comprehensive view of 
possible portfolio outcomes is given, allowing for the deduction 
of risk metrics and a general sense of what to expect financially 
for the simulated time horizon.  

As evidenced by the resulting simulated future scenarios, 
path dispersion decreases from portfolio 1 to 3. That is, each 
Monte Carlo analysis reflects of the general risk reward trade-
off present in our historical implementation. We further 
represent this by computing the 95% significance level, one-day 
value-at-risk and expected shortfall for strategy participation. 

IV. RISK METRICS FOR MONTE CARLO SIMULATION 

 
Dollar Returns 

Portfolio 1 Portfolio 2 Portfolio 3 

𝑉𝑉𝑉𝑉𝑅𝑅0.95 -40.28 -20.44 -7.45 

𝐶𝐶𝑉𝑉𝑉𝑉𝑅𝑅0.95 -50.64 -26.35 -10.69 
 

An important caveat regarding the presented simulation and 
the loss probability for portfolio 3 is that in order for the model 
to yield negative cumulative outcomes by year end 2018, the 
geometric Brownian motion model must be parameterized by a 
sufficiently low level of volatility (at most 0.075 compared to 
the ~0.10 calculated in the presented models), misleadingly 
suggesting that the straddle is riskless. Intuitively, as straddles 
capitalize on volatility, a low amount of market movement in 
either direction is sufficient for the strategy to capture some 
magnitude of return. As such, it is more realistic to use value-
at-risk on a shorter time frame, in which portfolio 3 does indeed 
exhibit losses - reflecting that the strategy is not in fact riskless. 

From the vantage point of an investor evaluating potential 
momentum trading strategies to engage in at the onset of 2018, 
it is important to note that while the above metrics are useful for 
risk management, limitations of the model must be kept in 
consideration. First, the market environment from which the 
underlying stock model parameters were calculated, was one of 
strong growth for the S&P 500. This could likely serve to 
overestimate the positive drift each path exhibits, simulating a 
future with a higher growth rate than would likely be observed. 
Additionally, a pitfall of using the geometric Brownian motion 
model is the fact that it draws from a standard normal 
distribution in its generation of the Brownian motion terms that 
apply random shocks to the model’s constant variance. This is 



an inadequacy as it yields a lighter tailed distribution of returns 
relative to what’s realized historically. Thus the dispersion and 
the probability of realizing negative outcomes are likely 
understated. 

Lastly, as a hedged version of portfolio 3, portfolio 4 
exhibited even less variance, dollar return and an eventual value 
decay, implying a low likelihood of divergence from this 
observed behavior.  This relatively poor performance coupled 
with the mounting transaction costs, render computationally 
exhaustive risk management techniques including monte carlo 
analysis,  overzealous and likely misrepresentative for risk 
management purposes. 

 

Monte Carlo Results (01/01/2018 – 12/31/2018) 

 

 
Figure 7: Monte Carlo Simulation of Portfolio 1 

 

 
Figure 8: Monte Carlo Simulation of Portfolio 2 
 

 
Figure 9: Monte Carlo Simulation of Portfolio 3 
 

V. INFLUENCE OF TRADING SIGNALS 
The analysis conducted was based on the signals given by 

comparing the 120-day SMA and the 60-day SMA. However, 
had the signals been different, the results would have changed 
drastically.  

 
Figure 10: Performance of all Portfolios using 30-days SMA and 60-day SMA 
 

Had the momentum been set-up using the signals produced 
by the 30-day SMA and the 60-day SMA, portfolio 1 would 
have incurred a huge loss. However, had the momentum been 
set based on the signals produced by the 90-day and 120-day, 
portfolio 1 would have outperformed the market index. Notice 
that in either case, portfolio 2 also shares the same fate, but to a 
lesser extent. As such this is a brief illustration of how choice 
of  indicator can heavily influence momentum trading results. 

 



 
Figure 11: Performance of all Portfolios using 90-day SMA and 120-day SMA 

V. ALTERNATIVE INDICATOR SUMMARY STATISTICS 

 Dollar Returns 

 
Portfolio 
1 
SMA30/S
MA60 

Portfolio 
2 
SMA30/S
MA60 

Portfolio 1 
SMA90/S
MA120 

Portfolio 2 
SMA90/S
MA120 

Min -104.13 -27.77 -104.13 -27.77 

Max 106.85 72.38 106.85 72.38 

1. Quartile -7.89 -4.39 -7.03 -4.15 

3. Quartile 8.31 3.88 8.80 4.23 

Mean -0.12 0.06 0.46 0.35 

Median 0.22 -0.46 0.64 -0.31 

Variance 271.93 64.02 271.73 67.52 

Stdev 16.49 8.00 16.48 8.21 

Skewness -0.20 0.96 -0.09 1.08 

Kurtosis 3.83 5.14 3.85 5.26 
 

VI. MEAN-VARIANCE OPTIMIZATION 
A classic financial outlook in the context of effective 

portfolio management is to optimize the tradeoff between the 
two parameters, mean and variance. In general, a rational 
investor would only deem a portfolio worth investing if it 
resided on the upper half of the efficient frontier, i.e. the set of 
portfolios with the optimal expected return for a given level of 
volatility or lowest magnitude of volatility when imposing a 
fixed threshold for acceptable return. Because of these clear risk 
management implications, it is relevant to consider the 
plausibility of imposing this two-parameter optimization in the 
context of portfolio allocation and investment decision making.  

Specific to the proposed strategies, mean-variance 
optimization approach would perform poorly in terms of 
producing reliable results.  Although the distributions of return 

from both portfolio 1 and the S&P 500 are almost symmetrical, 
their returns are linearly correlated which, in this case, lessens 
the effectiveness of the overall purpose of diversification.  The 
returns from portfolios 2 3, and 4, however, are not normally 
distributed (see Figure 12); in addition to exhibiting the right-
skewed and heavy tailed behaviors (see Table I), options from 
these portfolios are time-dependent. As the result, their 
estimated variances become ineffective as a useful measure of 
risk [3]. 

 
Figure 12: Distribution of Returns of all Portfolios 
 

Nevertheless, taking into account the inherent financial 
leverage provided by options on S&P 500, it is possible to 
combine all the proposed portfolios and apply a more advanced 
optimization technique which falls beyond the scope of this 
paper. 

VII. CONCLUSION 
The net result of researching the behavior and structure of 

the proposed portfolios was an ability to gauge the effectiveness 
of using Black-Scholes options in the context of momentum 
trading and replication. This offered perspective of how return 
magnitude is highly subject to the market dynamics through 
which daily trading action is taking place. Namely, a sustained 
period of low growth or decay exposes the pitfall of the 
proposed portfolios’ perpetual dependence on the presence of 
momentum. 

This leads us to a concept that is fundamental regarding the 
idea of risk in the practice of conditioning trading decisions on 
a quantity, or an indicator, assumed to be linked to current 
market direction. The concept is indication quality. That when 
trading off momentum, the definition of risk needs to be 
extended beyond volatility to include the likelihood that the 
indicator mistimes or misreads the market’s momentum. That 
when consecutive gains or drops in relevant prices are in fact 
taking place in the market, it is possible that the indicator will 
inform the strategy incorrectly, or not condition the strategy 
with this information until either the directional movement has 
progressed significantly, already passed, or not yet taken place. 
Thus  at any given point in time, risk is not so much comprised 
of the market position itself, but of the incoming indicator data 



that will cause inconsistencies in market sentiment between the 
strategy itself and the market’s underlying direction.  

Much of this indicator risk is systematic, however as was 
illustrated in the timeframe of our portfolio analysis, it can be 
reduced or eliminated by acting on market direction through 
dealing in options. Hence, the motivation for deploying three 
replication methods built around transacting in options rather 
than the index itself.  

Finally, this paper at its core drives at how portfolio 
analytics is essential to understanding the nature and influence 
of capturing time-series momentum in the S&P 500 index. That 
when structuring a portfolio intended to capitalize off market 
direction, the only class of strategies immune to indicator risk 
are those with bidirectional market exposure accompanied by 
low upside potential and a strong dependence on volatility. 
Otherwise, strategy prosperity can be viewed as a function of  
its interaction with non-directional environments as well as its 
ability to consistently produce an accurate market response. As 
such these qualities provide the important foundation in the 
relationship between signal capitalization, hedging and external 
market factors. 
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