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A dynamic sponsor-aware LDI framework for de-risking corporate pension funds 

Section 1: Introduction 
The pension crisis has brought defined benefit (DB) pension plans under increased 
scrutiny. There is clear evidence [1] that pure asset maximization strategies result in 
excess funded status volatility during periods of market stress. Liability-Driven Investing 
(LDI), on the other hand, has presented itself as a promising alternative.  Defined-benefit 
plans are pension plans that must meet predefined benefit payments to retirees. LDI 
addresses this objective by focusing on liability risk management [2]. One popular LDI 
strategy is the funding ratio glide path, which shifts a pension’s asset allocation into less 
risky portfolios as funded status milestones are reached. Although intuitively attractive, 
this approach suffers from the drawback that de-risking points are often rigidly defined. 
In this paper, we incorporate the dynamic de-risking features of glide paths into a 
portfolio optimization framework that does not rely on predefined de-risking triggers. We 
further enhance our strategy to incorporate the risk of the plan sponsor in portfolio 
allocation. 
 
In the absence of liabilities (and additional assumptions on investor utility and return 
distributions), one may achieve optimal asset allocation by applying the mean-variance 
optimization of Markowitz [3,4]. However, in the presence of a stream of liabilities, 
direct application of the mean-variance portfolio theory is no longer appropriate, as it 
does not take into account the risk of becoming underfunded. One widely employed 
strategy for LDI is the surplus management approach (Sharpe and Tint [5]), which 
defines surplus as the value of assets net of liabilities, and conducts mean-variance 
optimization over the surplus return. This approach incorporates the correlation between 
the asset and the liability into the objective function.  As Ang et al. point out in [6], a 
drawback to the Sharpe-Tint method is that it handles the downside (underfunding) and 
upside (overfunding) risks in a symmetric fashion.  
 
In practice, the upside risk is of little concern to pension sponsors (due to unfavorable 
taxes on withdrawing surplus assets) while the focus is mostly on the shortfalls. To 
address this issue, Ang et al. proposed a variant of the Sharpe and Tint model that only 
penalizes liability deviation on the downside. They modeled the shortfall as a put option 
whose end-of-period payout is given by the discrepancy between future liability and asset 
value, or zero in the case of a surplus. Mathematically, this payout is given at the end of 
the period by ������� � ��� ��. The Ang model obtains portfolio weights through 
maximization of a modified objective function: 
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where � represents the equity weight, �� � ��� � � � � �� represents returns on pension 
assets, �� and �� are equity and bond assets which make up the asset portfolio, and 
���� ������ is the value of the put option at funding level �����.  In the above, � 
represents the risk aversion coefficient in the classical mean-variance setting, and � is an 
additional risk parameter that can be tailored to the plan sponsor’s preferences. The 
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attractiveness of this model is that it produces endogenous risk aversion characteristics 
such that the optimal equity weight changes according to funded ratio level. As the 
funded ratio increases towards 100%, the non-intrinsic value of the put option also 
increases and leads to higher effective risk aversion relative to liabilities. Thus, this 
optimization problem includes a policy similar to industry glide path offerings, where 
tracking error to liabilities decreases as funded ratio increases. 
 
We develop an enhanced LDI methodology by including a risk aversion parameter that 
varies with time, and a term that penalizes the co-movement of the equity returns of the 
plan sponsor with plan asset returns. The additional covariance penalty term allows our 
solution to account for the implicit short put position on the funded ratio that a plan 
sponsor assumes when promising to pay its beneficiaries. This put position has taken on 
an increased importance given the Pension Protection Act of 2006 (PPA) [7] where 
underfunded pensions are given a 7-year horizon to reach 100% funding. Given that the 
put option value is countercyclical (as funded ratios typically decline in recessions due to 
negative returns of equity assets and falling interest rates), the co-movement with plan 
assets of the sponsor should be a key determinant in the asset allocation of a particular 
plan.  
 
The time-varying aspect of our coefficient allows us to set a desired time horizon to reach 
full funding and vary the asset allocation based on time elapsed. We demonstrate that our 
proposed product improves the distribution of positive funding outcomes, and does so 
with less funded ratio risk relative to alternative formulations. We establish this using 
both historical backtests and Monte Carlo simulations along with appropriate statistical 
tests.  
 
The remainder of the exposition is arranged as follows: In Section 2, we outline the 
specifications and methodology behind our product. Section 3 presents and discusses our 
results, both quantitatively and qualitatively, and Section 4 concludes. 

Section 2: Specifications 
Our model produces portfolio weights as the output of the optimization 
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In our objective function, ��� �

�
� ��  represents the covariance of the equity returns of the 

plan sponsor with that of the portfolio assets. Recall that the Capital Asset Pricing Model 
(CAPM) states that �

�
� �� � � �� � �� � �. We use this to isolate the systematic 

component of the covariance and simplify the corresponding penalty term. This term 
enables us to penalize situations when both the plan sponsor and the plan assets are under 
duress. Additionally, we wish to penalize a firm that possesses more systematic risk than 
the market, so we set the penalty term to be centered around the � � � level. That is to 
say, for a � � � firm, there is no additional penalty, but larger (smaller) � will, all else 
equal, adopt less (more) equity-heavy asset allocations. Thus, we replace the covariance 
term ��� ��� ��  by the following expression: 
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The overall effect of this term minimizes the likelihood that a plan sponsor will need to 
make contributions when it is most costly to the firm, i.e. when firm assets as well as plan 
assets are depressed in value.  
 
Additionally, we have made ���� a time-varying risk aversion parameter for the shortfall 
option. The desired behavior is captured by the functional form: 
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where � � � � � is the time remaining, T is the pre-specified time horizon, and � is the 
elapsed time.  
 
The risk aversion coefficient attached to the shortfall put decreases as time passes at a 
constant rate. This implies that the optimal holdings for underfunded plans approach the 
mean-variance weights as the end of the investment horizon nears. The reasoning for 
taking on this additional risk stems from the fact that if the plan is underfunded with little 
time left, a more aggressive asset allocation will be required in order to meet goals. In 
other words, those plan sponsors facing significant penalties should be less averse to 
shortfalls as the time left to reach full funding dwindles. 
 
The time-varying component of risk aversion in our model may appear to undertake 
additional portfolio risk near a seemingly arbitrary deadline.  However, statutory 
demands of the PPA necessitate reaching full funding in a 7 year time period, with the 
sponsor being required to contribute any shortfall at the end of this period. Given these 
requirements, we believe it is reasonable to manage our strategy around a given time 
horizon. 
 
To solve the optimization problem, we assume the following dynamics for the equity and 
the bond respectively: 
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The value of the asset portfolio at end of a single period is determined by weights to 
stocks, w, and bonds, (1 - w), chosen at time 0: 
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The dynamics of the liabilities are also assumed to be lognormal with drift �� and 
standard deviation �� (we also assume correlation between assets and liabilities): 
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Valuation of the shortfall put option presents a challenge since the quantity ����� is not 
lognormally distributed. Although it is trivial to compute the price using Monte Carlo 
simulation, the resulting penalty (as a function of � and ��) will not be smooth enough to 
optimize using any method other than computationally expensive brute-force grid 
searches or simulation-based methods. Objective functions that are too rough or jagged 
will appear to have multiple local optima and will cause optimization routines to 
terminate prematurely at sub-optimal points. Thus, as in Ang et al., we employ the 
approximation frameworks set forth by Margrabe [8] and Venkatramanan & Alexander 
[9]. The payout of the shortfall is represented as that of a spread option, which is then 
approximated by a compound exchange option for which there is a closed-form 
valuation. This allows us to construct an objective function that is sufficiently smooth for 
use with efficient optimization routines; in this work, we use the interior point method.  

Dynamic Strategy and Rebalancing Policy 
Given the asset allocation methodology outlined above, we apply our framework over a 
pre-specified time horizon. We calculate optimal portfolio weights at annual intervals and 
implement the following dynamic strategy: 
 

1. Determine starting asset allocation based on an initial optimization. 
 

2. At the end of the following month, calculate the change in funded ratio based on 
the respective returns of assets and liabilities. 
 

3. If the end-of-month funded ratio drops below a minimum specified level, assume 
the plan sponsor contributes to bring the funded ratio back to minimum threshold. 
We measure the cumulative contribution amount for benchmarking purposes. 

 

4. Repeat steps 2 and 3, calculating new optimal holdings only at annual intervals. 
 

We make the assumption of a minimum funded ratio barrier for two reasons. First, we 
would like to maximize the probability of success: at extremely low funding levels, the 
amount of growth needed to reach full funding becomes practically insurmountable. The 
second reason is that there may be statutory or plan sponsor-related minimum funding 
requirements; in the case of U.S. law, the PPA requires plans deemed “at-risk” to have 
more stringent shortfall covering requirements.  
 
Beyond the parameters required in our optimization procedure, the following additional 
parameters are required for our strategy: 
 

• ��: Initial funded ratio 
• ���� � ��: Minimum permissible funded ratio barrier (either by statute or 

sponsor policy) 
• �: Target horizon to reach full funding (generally 5-10 years given PPA 

constraints) 
• �: CAPM Beta of the corporate pension sponsor (used as a proxy for firm/asset 

systematic risk) 
• �� ����: Risk aversion parameter constants 

 

A graphical presentation of a simulated path of the funded ratio for a 10-year horizon is 
shown below. 
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Section 3: Historical Backtest and Simulation Results 
In determining the efficacy of our strategy relative to other approaches, we employ both 
historical backtesting and Monte Carlo simulation. We identify several key criteria that 
can be used to quantify the relative success of our approach: 
 

• High terminal funded ratio  
• Low funding ratio volatility 
• Small probability of underfunding at completion 
• Minimal cumulative sponsor contributions 
• Moderate portfolio turnover 

 

As proxies for our asset and liability processes, we select the following indexes for use in 
testing: the S&P 500 Index for equities, the Barclays Capital Long Corporate Index for 
fixed income, and the Citigroup Pension Liability Index to represent the liability.  Our 
motivation for using a long corporate index instead of the more popular Barclays 
Aggregate is that we want a high duration fixed income asset in order to hedge the even 
higher duration liability index as much as possible. We assume risk, return and 
correlation characteristics for our assets given by the 2015 JP Morgan Asset Management 
Long-Term Capital Markets Assumptions [10]. These forward-looking, “through-the-
cycle” values are intended to estimate risk and returns for asset allocators. For liabilities, 
we assume excess return and risk relative to a JP Morgan long duration treasury index 
assumptions. However, in modeling the correlation of liabilities to assets, we assume 
historically realized correlations using CPLI data. 
 

 
Annual 
Return 

Annual 
Volatility 

S&P 500 Index (��� 7.5% 14.75% 
Barclays Long Credit 

Index  (��� 
5% 9.75% 

Liabilities (CPLI) (��� 5.5% 12.50% 
 

Correlations S&P 
500 

Long 
Credit CPLI 

S&P 500 Index 1 0.25 0.2 
Long Credit 

Index 0.25 1 0.98 

Liabilities 
(CPLI) 0.2 0.98 1 

 

We use these assumptions during all periods in both simulations and backtests. To 
benchmark our strategy against alternative procedures, we compare our strategy against 
the following three alternatives: mean-variance portfolio optimization (MVO), Sharpe 

�	�

��	�

��	�


�	�

��	�

���	�

���	�

��	�

��	�

�	�

���	�

���	�

���	�

�� �� �� 
� �� ���

�
�
�
�
��
���
�
��
�
�
����

�
���
�
���	

��
�
�
�
�
�
�
� 
�
��
�
��
	
��

!�����"����#�����$����

�����
���



� 
�

Tint surplus optimization (ST), and the Ang et al. framework (Ang).  The objective 
functions from the respective procedures are reproduced below. 
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We use the following parameter assumptions for our simulations and backtests: 
 

Parameter Value 
Initial Funded Ratio 85% 

Min Funded Ratio Barrier 75% 
Investment Horizon 10 years 
Sponsor CAPM Beta 1.0 

�� �� 4.0, 2.0 

Our choice of � � ��� results in mean-variance weights of 51% to equities and 49% to 
fixed income, weights that represent a reasonable asset allocation for a non-LDI pension 
plan. Our choice of �� � ��� represents significant shortfall risk aversion and is sourced 
from the Ang et al. paper. 

Monte-Carlo Simulation 
Below we display a histogram and cumulative distribution function of ending funded 
ratio outcomes across 100,000 simulations of each methodology. We use the same set of 
random numbers as inputs, thus allowing us to compare outcomes given similar inputs.  

 
 
The blue items represent results using our approach. Relative to the Ang et al. approach, 
our methodology shifts the distribution of funded ratio to the right, with more mass 
occurring at outcomes at or above full funding. This is a result of our time-varying 
shortfall aversion parameter that we specify, where underfunded plans will re-risk as time 
decreases. Relative to the mean-variance and Sharpe and Tint approaches, our strategy 
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reduces mass at both tails, placing more emphasis on outcomes near full funding as we 
set out to do. 
 
We display summary statistics of the results of our simulations below. Note that since the 
mean-variance weights do not change, the corresponding turnover is 0.  
 

 MVO ST Ang Proposed 
(ß = 1) 

 Ending Funded Ratio 
Mean 1.0333 0.9726 0.9644 0.9720 

SD 0.2281 0.1772 0.1330 0.1404 
 Underfunded at Ending Time Horizon 

Mean 0.5333 0.6418 0.6651 0.6053 
SD 0.0016 0.0015 0.0015 0.0015 

 Volatility of Funded Ratio 
Mean 0.0944 0.0712 0.0627 0.0656 

SD 0.0573 0.0420 0.0300 0.0309 
 Cumulative Contribution 

Mean 0.0869 0.0570 0.0367 0.0380 
SD 0.1567 0.1168 0.0691 0.0702 

 Annualized Portfolio Turnover 
Mean 0 0.0065 0.0651 0.0675 

SD 0 0.0020 0.0206 0.0242 

 
Given that our methodology builds upon the Ang et al. framework, we conducted 
statistical tests to compare the outcomes. We compare differences in ending funded ratio 
using paired two-sample t-tests, and differences in probability of end time underfunding 
using McNemar’s chi-squared test for correlated samples [11]. The results and 
interpretation of our tests are displayed below. 
 

 

 Our Approach vs. Ang Interpretation 
Ending Funded Ratio (A/L)* 121.22*** Mean of our ending A/L is higher 

Underfunded at end time** 5192.97*** Probability of ending underfunded 
is lower for our method 

Volatility of Funded Ratio* 267.95*** Our funded ratio volatility is 
higher 

Cumulative Contribution* 118.19*** We have higher cumulative 
contributions 

*Differences are tested by paired two-sample t tests 
** Differences are tested by McNemar’s chi-squared test 
*** p-value < 0.01 
 

Overall, relative to the Ang et al. method, we improve funding ratio outcomes at the cost 
of additional volatility and contributions. This is a conscious decision on our part to make 
our strategy add equity risk as we approach the time horizon if the plan is underfunded. 
The assumed beta of 1.0 implies a moderate tolerance to making contributions; below we 
will investigate the effect of varying the beta parameter. 

Historical Backtest 
We complement our Monte Carlo simulations by conducting a backtesting procedure 
using historical asset and liability returns. While the Monte Carlo simulation procedure 
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allows us to compare distributions of outcomes, it comes at the cost of a strong 
assumption of normally distributed returns given constant parameters. We thus adapt our 
optimization framework to historical data, using monthly realized returns for the S&P 
500, Barclays Long Credit Index, and Citigroup Pension Liability Index. Backtest results 
are calculated across rolling 10-year window horizons using data from January 1995 to 
January 2015. 
 
Across the 120 (overlapping) ten year windows in which we backtest, we generate a 
histogram of ending funded ratios as well as a cumulative distribution function. The 
cumulative distribution function suggests that our methodology results in a higher 
proportion of outcomes that occur at higher ending funding levels. Our strategy 
accomplishes this with a modest 8.14% annualized turnover, as compared to 11.03% 
using the Ang method. Across methodologies, funded ratio goals are typically not met in 
the historical backtest, which is due to a combination of mixed equity returns and a large 
compression in long-term rates over the sample, which greatly boosted CPLI 
performance. Overall, the backtest results support our methodology over alternatives, and 
do so in a challenging investment environment, both in regard to asset performance and 
liability growth.  

 

Effects of Differing CAPM Beta Assumptions 
Having compared our methodology to alternative approaches, we now illustrate the 
effects of varying the CAPM beta within our strategy. We run 100,000 simulations using 
three CAPM beta assumptions of � � ����� � ����� � ���, and compute both sample 
statistics in addition to a Box-and-Whisker plot showing the distribution of cumulative 
contributions for each assumption. Based on our model design, we expect to decrease 
required contributions for higher beta firms. 
 
 
 
 
 
 
 
 

0

5

10

15

0.7 0.8 0.9 1.0 1.1
Ending Funding Ratio

C
o
u
n
t

Method

Ang

MVO

Proposed

SharpeTint

0.00

0.25

0.50

0.75

1.00

0.7 0.8 0.9 1.0 1.1
Funded Ratio

C
u
m

u
la

ti
ve

 D
s
tr

ib
u
ti
o
n



� �

 
 
The edge of the grey box represents the 75th percentile cumulative contribution outcome 
and the end of the black line represents the simulation with the highest cumulative 
contribution amount. As expected, our plot shows that as CAPM beta increases, the 
distribution of cumulative contributions narrows significantly. Thus, as beta increases, 
the expected amount of contributions that will need to be made decreases monotonically. 
This is exactly the behavior we set out to achieve through inclusion of the sponsor 
covariance term. 
 
Looking at ended funded ratios, we see that the average ending funded ratio also 
decreases monotonically as beta increases. This is a consequence of having less equity 
risk all else equal as sponsor beta increases. Higher sponsor beta also leads to a decrease 
in funded status volatility in our simulations. This can be interpreted as implying a lower 
cost to a hypothetical put option that insures the sponsor against funding shortfalls. 
Although not pursued in this study, the cost to the sponsor can be quantified if we were to 
implement a dynamic hedging strategy for downside protection. 

Section 4: Conclusion 
We put forth a model that effectively de-risks a corporate pension plan relative to 
liabilities while still prioritizing full-funding goals. Our model builds upon the work of 
Ang et al., yet enhances the framework in ways that improve the distribution of 
outcomes. Our improvements focus on two key areas: incorporating the sponsor’s 
systematic risk in asset allocation, and shortfall risk aversion as a function of time 
horizon. From the plan sponsor’s perspective, our deliberate modifications to the 
optimization framework minimize the chance of shortfall and the associated costs to the 
firm sponsor when it is obligated to contribute.  
 
Through simulation and testing, we show that our method results in a higher proportion 
of outcomes most favorable to plan sponsors while reducing outcomes that are either 
grossly overfunded or underfunded. We also apply our methodology to actual historical 
data where we find similarly positive results. Lastly, we illustrate the flexibility of our 
strategy to different plan sponsor systematic risk levels, and show how our framework 

Proposal ß = 0.5 ß = 1 ß = 1.5 
 Ending Funded Ratio 

Mean 0.9830 0.9720 0.9611 
SD 0.1485 0.1404 0.1330 

 Underfunded at Ending Time Horizon 
Mean 0.5693 0.6053 0.6452 

SD 0.0016 0.0015 0.0015 
 Volatility of Funded Ratio 

Mean 0.0693 0.0656 0.0620 
SD 0.0333 0.0309 0.0288 

 Cumulative Contribution 
Mean 0.0419 0.0380 0.0341 

SD 0.0759 0.0702 0.0646 
 Annualized Portfolio Turnover 

Mean 0.0766 0.0675 0.0592 
SD 0.0254   0.0242 0.0224 
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minimizes contributions by those sponsors least able to contribute in market stress 
scenarios. 
 
Finally, it is worth noting that our framework is flexible across alternative assumptions. 
Our single period framework implicitly assumes that very near term cash payouts are 
managed separately, and we also do not assume any ability to forecast time-varying asset 
returns. However, these additional conditions can be adopted to form a multi-period 
optimization problem. End users can supply custom return generating and liability-
hedging portfolios with time-varying capital market assumptions. The framework is also 
adaptable to different initial funding ratio and time horizon assumptions.  
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