
CDS Risk Modeling and Hedging Strategy: A Statistical Approach 

Chapter 1  

Abstract 

In this paper, we argue that a key component of mitigating market risk, counterparty risk, 
and moral hazard would be determining a correct level of capital reserves. To support this, we first 
implement a hazard model, where the analysis on the ABX AAA 2006-2 index shows that the 
market actually diverges significantly from fundamentals, resulting in significant mark-to-market 
risk. We then further propose a factor-based model which describes its deviation from the 
fundamental price. Next, through the Kupiec test, we show that the VaR distribution likely follows 
a Student-t Distribution. We further utilize a hidden Markov regime switching approach to 
determine an appropriate stressed period. In the last chapter, we present a regression-based hedging 
strategy that effectively mitigates the risk of holding a CDS contract. 

Chapter 2  

Introduction 

On September 16th, 2008, after experiencing substantial losses on a large portfolio of 
subprime CDS, AIG received access to an $85 billion revolving credit facility authorized by the 
Federal Reserve Board. The rescue of AIG and its counterparties, which when combined with other 
eventual government facilities would total over $120 billion [1], sent a message to financial markets 
that large institutions with significant derivative exposures would not be allowed to fail. This action 
has contributed to a sense among practitioners that when financial conditions deteriorate into a 
crisis, the government will ensure that your derivative exposures to large institutions be made 
whole.  

By rescuing the counterparties of AIG in 2008, the Federal Reserve has, to some extent, 
removed or reduced the financial incentive a practitioner has to fully evaluate the credit quality of a 
potential counterparty. If a market participant believes in a continuation of this crisis policy, he or 
she might be more likely to enter into a contract with a large, rescue-worthy financial institution as 
opposed to a smaller institution whose failure would be inconsequential to the health of financial 
markets as a whole. In addition, this removes or reduces incentives that large financial institutions 
had to minimize risk in order to attract additional or continuing derivatives business.  In order to 
reintroduce the necessary financial incentives behind properly assessing counterparty risk, the 
government needs to develop a credible strategy to handle institutions whose failures it believes 
would have severe market implications. 

In this paper, we argue that a correct level of capital reserve would be the key solution to all 
these problems: Market risk, Counterparty risk, and moral hazard. With a sufficient reserve, AIG 
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would be able to avoid a severe capital requirement as a result of being downgraded, and its 
counterparty would able to cover the loss with a much smaller chance of causing a systematic crisis. 
Moreover, accurate capital requirements could allow the poorly managed banks to fail without 
dragging the whole system down. As such, it helps to avoid the infamous moral hazard problem 
known as “Too Big to Fail”.  

To simulate the reserve, we propose both a hazard rate model and a factor based VaR 
model. Due to the mark-to-market accounting requirement, we focus on the analysis of the 
ABX.HE AAA index, which is the most widely used index for mark-to-market CDO and CDS 
products.  In the mid 2000’s, Markit introduced a vehicles through which one could monitor the 
overall performance of the subprime MBS market, known as the ABX indices [2]. By combining 
specific tranches of 20 large subprime ABS deals completed within a certain time frame, each index 
was designed to track the performance of these tranches over time. This ability to write derivative 
contracts based on the ABX allows for both hedging and speculating in a market for which 
otherwise would be difficult to do on an instrument-by-instrument basis.  

In the following chapters, we will demonstrate how an investor can calculate their 
appropriate reserve based on this model. Also, the investor can easily extend the model to the 
calculation of the reserve for counterparty risk. In the end, we will also show a hedging mechanism, 
which could help investors efficiently reduce their market risk. 

Chapter 3  

Pricing the Bond Value and Reserve 

3.1 ABX Modeling Analysis 

Modeling ABS can be difficult since its price is driven by several interacting factors: the 
interest rate process, prepayment behavior, and default behavior. We, therefore, adopt a Monte 
Carlo simulation to price the ABX.HE, such that we can model the following processes separately: 

Term structure dynamics: The interest rate process is assumed to follow the Hull-White 
model, where the short rate follows an Ornstein-Uhlenbeck process under risk-neutral measure with 
a time-varying mean: 

𝑑𝑟! = 𝜃 𝑡 − 𝜅𝑟! 𝑑𝑡 + 𝜎𝑊! 
We first fit the term structure using the pure discount bond prices, and then calibrate the 

parameters 𝜅  and 𝜎  using caplet volatilities. Once 𝜅  and 𝜎  are calibrated, 𝜃(𝑡)  can be implied 
according to Veronesi (2010)[3]. 

𝜃 𝑡 =
𝜕𝑓(0, 𝑡)
𝜕𝑡 + 𝜅𝑓 0, 𝑡 +

𝜎!

2𝜅 (1− 𝑒
!!!") 

 𝑓 0, 𝑡 = − !"#$%(!)
!"
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Hazard estimates of prepayment and default: We adopt a reduced-form model to depict 

prepayment and default behaviors, assuming that the two behaviors are driven by the following 
exogenous factors: 

• Seasonality (i.e. summer month indicator) 
• Coupon gap, which is difference between the tranche coupon and 3-month lagged 

10-year LIBOR. 
• Loan-to-value (LTV), which is the ratio between the remaining balance of the bond 

and the house price. The house price dynamic is assumed to be a Geometric 
Brownian Motion with an independent stochastic driver. 

𝑑𝐻!
𝐻!

= 𝑟! − 𝑞! 𝑑𝑡+Ψ!𝑑𝑊!.! 

 
The hazard rates are estimated under Schwartz and Torous (1989) [4] log-logistic 

proportional hazard 
𝜆 𝑡 = 𝜆! 𝑡 𝑒

!!!!!!!!!!!!!!!⋯𝑑𝑡 +Ψ!𝑑𝑊!.! 

𝜆! 𝑡 =
𝛾𝑝 𝛾𝑡 !!!

1+ 𝛾𝑝 !  

Here we adopt the coefficients (γ, p, β!, β!, and β!) from the Stanton and Wallace (2011) 
paper.[5] Having obtained the hazard estimates and interest rate dynamics, we can obtain the 
monthly default and prepayment behavior, then allocate the cash according to the seniority and the 
balance of each tranche. Details of the waterfall rule and the monthly balance of each tranche can 
be found on www.markit.com and on Bloomberg.  

3.2 ABX Simulation Result 

 
Figure 3-1. ABX.HE 2006-2 AAA Market Price vs. Model Price 

In this sector, we examine the pricing model on ABX.HE 2006-2. The monthly balance of 
each tranche and weekly index price are obtained from Bloomberg.   The result is shown in Figure 
3-1. In performing the valuation from 2008/7-2013/10, we can see that in the long term, the market 
price tends to converge to its fundamental price. The ABX.HE index CDS seems to be 
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systematically mispriced. The large up-front payments for the CDS are not consistent with the 
hazard rate model and are likely explained by the other risk factors.    

This finding contributes to a growing concern linked to the recent passage of the Volcker 
rule. Under this new rule, some CDOs are required to be reclassified as “Available for Sale,” and 
therefore banks must mark-to-market these portfolios. According to Stanton and Wallace’s (2011) 
[5] calculation, if we mark-to-market all bonds rated AAA on Jun 30, 2009, the loss would be $90.8 
billion. As a result, investors must be aware of their mark-to-market risk, as it may affect their 
regulatory capital requirements and the timing of liquidations. In the coming section, we will build 
up a factor model, to explain the excessive fluctuation of the bond beyond its fundamental value. 

3.3 Reserve and VaR Model 

To determine a sufficient capital reserve, we start by following Basel III, which strictly 
defines a standard requirement of market risk capital. Here, banks are asked to calculate 10 day 
VaR at a 99% confidence level on a daily basis. In addition, they must also calculate a “Stressed 
Value at Risk measure” with model input based on a 250-day period of Stressed Regime. 

 
𝐶 = 𝑚𝑎𝑥 𝑉𝑎𝑅!!!, 3 ∗ 𝑉𝑎𝑅!"# +𝑚𝑎𝑥 𝑠𝑉𝑎𝑅!!!, 3 ∗ 𝑠𝑉𝑎𝑅!"#  

 
In this paper, we adopt a factor-based approach to calculate VaR, one consistent with 

standard practices in the financial sector. The idea is to map each asset of the portfolio to common 
risk factors and base the calculation of VaR on these risk factors. Mathematically, we model the 
daily return of an asset as a linear function of factor returns and residuals as follows. 

𝑟 = 𝛽!𝑓! + 𝜖
!

 

The portfolio variance can be calculated as: 
𝜎! = 𝛽!𝐹𝛽 + 𝜎! 

Here, 𝑟 is the asset return, 𝑓! is the factor return, 𝜖 is the idiosyncratic risk, and 𝐹 is the 
variance-covariance matrix of the factor returns. We include six risk factors for calculating VaR. 
First, we use the S&P 500 Index, which captures the systematic risk of the financial market. 
Second, we use the LIBOR-OIS, a “liquidity spread” defined as the difference between the three-
month Libor and the three-month overnight index swap, measuring short term risk. Third to fifth, 
we use the 5Y and 10Y Swap Rate, which indicates the change of yield curve as well as the 30Y 
Mortgage Rate. Lastly, we use the CDX IG spread and the implied volatility of 3M10Y swaption. 

Basel III also requires that each VaR model captures the nonlinearities beyond those 
inherent in options and other relevant products. Therefore, we also include second-order terms of 
risk factors. 
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3.4 VaR Simulation Results 

Accordingly with Basel III, we perform Monte Carlo simulations as a VaR assessment tool. 
To do this, we first calculate the covariance across the market risk factors. We then generate 
random routes by assuming the factor movements follow a normal distribution, a Student-t 
distribution, and a GARCH(1,1) model. Next, we calculate the asset price accordingly. After a 
repeated series of simulations, we realize a simulated distribution of our portfolio and obtain our 
VaR. 

To assess the performance of our one-day horizon VaR forecasts using the rolling window 
procedure, we start with a 100-day window. With this data, we can calculate a one-day forward 
VaR for each of these 3 methods. By using this rolling window, we can assess the historical 
probability that the realized return is less than our 99% VaR. 

Table 3-1. ABX Hot-Run AAA Out of Sample Back-testing 

 
Historical Prob. Kupiec Test Reject 

Linear Model (Normal) 2.16% 10.29 Yes 
Linear Model (Student T) 1.44% 1.45 No 
Quadratic Model (Normal) 2.16% 10.29 Yes 

Quadratic Model (Student T) 1.44% 1.45 No 
GARCH(1,1) 1.98% 7.51 Yes 

Table 3-2. ABX Hot-Run AA Out of Sample Back-testing 

 
Historical Prob. Kupiec Test Reject 

Linear Model (Normal) 2.52% 16.82 Yes 
Linear Model (Student T) 0.90% -0.06 No 
Quadratic Model (Normal) 2.52% 16.82 Yes 

Quadratic Model (Student T) 0.90% -0.06 No 
GARCH(1,1) 2.52% 16.82 Yes 

 
Next, we use a Kupiec test [6] to test the null hypothesis that our VaR historically indicates 

the 99% level. The test statistics are shown as follows: 𝐿𝑅 is the log likelihood ratio, 𝑇 is the 
number of observation points, 𝑁 is the number of return below VaR, and 𝑝 is the probability for a 
corresponding confidence level. In our case, p is equal to 1%. Since this test statistic is 
asymptotically 𝜒! distributed with one degree of freedom, the confidence level is 3.84 at 𝛼 = 5%.  

𝐿𝑅 = −2𝑙𝑛 1− 𝑝 !!!𝑝! + 2𝑙𝑛 1−
𝑁
𝑇

! 𝑁
𝑇

!

 

We found that the factor VaR model with Student-t distribution does a satisfactory job of 
describing the VaR distribution. In this model, we fail to reject the null hypothesis that p=1% is the 
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true possibility, showing that the model is statistically significant. On the other hand, adding 
quadratic term and using a GARCH(1,1) model does not statistically significantly improve the VaR 
prediction out of the sample.  

 

 
Figure 3-2. Out of the Sample VaR Back-Testing 

3.5 Identifying Stressed Periods: Hidden Markov Regime Switching Analysis 

The last step of accessing stressed Value at Risk is to identify the stressed periods. Several 
ideas and methodologies have been proposed to distinguish among different regimes. For example, 
distinguished regimes have been based on the volatility level of the overall market measured 
through the VIX, Principal Components Analysis, and other methods. The majority of those 
methodologies use an arbitrary threshold to distinguish among two regimes. A naïve example 
would be to define a critical level for the VIX (30%) and implement a strategy following that 
specific rule. Those methodologies are not objective, and even worse, they are extremely prone to 
data-mining and overconfidence from in-sample results.  

Instead of choosing this threshold artificially, we introduce a hidden Markov regime 
switching approach [7] to determine the appropriate stressed period. The basic idea is that regimes 
exist both where assets perform very well and where they perform very poorly. Therefore, instead 
of using arbitrarily defined thresholds to define the regimes, we use maximum likelihood estimation 
to define the parameters in different regimes, as well as a Markovian transition matrix which 
describes the evolution of the system. A clear description of the methodology and an application 
has been given by Kritzman et al (2012). [8] 
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 Correlation is a key input when calculating all of the risk measures, and therefore assessing 
correlation accurately is extremely important for a financial institution. In this paper, the Hidden 
Markov Regime Switching technique is used to find different covariance matrices in different 
regimes instead of the classical application of finding expected returns in different regimes. We use 
Libor-OIS as the benchmark, and perform this method to find the 250-day period which has the 
highest likelihood of being in the high correlated regime. We denote the coveariance matrices in two 
regions by σ! and σ!, the Markovian transition matrix as M, and initial probality of being in the first 
regime as p!.  

To find the Maximum Likelihood parameters, we used the Baum and Welch algorithm. The 
result is demonstrated in the following chart. This method gave us a well-defined stressed region 
from 2008/9/3~2009/9/1. Table 3-3 is an example of the capital reserve as of 2012/5/1. Again, we 
can see that using the Student-t distribution, the tail risks are better captured.   

  

 

Figure 3-3. Likelihood of being in the High Correlation Region 

Table 3-3. Calculated ABX AAA Capital Reserved as of 2012/5/1 

 
sVaR(avg) VaR(t-1) VaR(avg) Reserve* 

Linear Model (Normal) 3.60% 2.30% 2.20% 18.34% 
Linear Model (Student T) 5.11% 3.22% 3.18% 26.22% 

 * Reserve = 3* 10days-sVaR(avg) + max{10days-VaR(t-1), 10days-VaR(avg)} 
 * 10 days-VaR= 1day-VaR*sqrt(10) 

3.6 Capital Reserves for Counterparty Risk 

Combining the hazard rate model and the factor-based VaR model, we should be able to 
come up with an appropriate level of capital reserve for counterparty risk. According to Basel III, 
Bank can model CVA VaR by the following Equation: 

CVA = LGD!"# 𝑚𝑎𝑥 0, 𝑒𝑥𝑝 −
𝑠!!!𝑡!!!
𝐿𝐺𝐷!"#

− 𝑒𝑥𝑝 −
𝑠!𝑡!

𝐿𝐺𝐷!"#
𝐸𝐸!!!𝐵!!! + 𝐸𝐸!𝐵!

2

!

!!!

 

Here 𝐸𝐸! is expected exposure at time 𝑖, which can be calculated using the hazard rate 
model. Accordingly, 𝑠! is the credit spread of the counterparty, whose VaR can be obtained by 
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using factor-based VaR model for the bond or CDS. Similar to the capital charge for market risks, 
banks are also required to calculate both a normal and stressed CVA-VaR, then multiply this result 
by a factor of 3 in order to get the counter party risk charge. The calculation follows exactly the 
same as we have done in the above section. 

In this chapter, we have introduced all the necessary tools to determine to quantify both the 
mortgage CDS price and the VaR. We also showed that these models provide significant VaR 
predictive performance. Using these tools, investors can determine the appropriate reserves for both 
writers of the CDS and for buyers of the CDS such that they can manage their risk more easily. In 
the next chapter, we would like to analyze a method to hedge CDS instruments. 

Chapter 4  

Hedging the CDS Instruments 

In our previous sections, we attributed changes in the ABX.HE price to a factor based 
approach. Here to hedge, we denote a market risk factor (m), an industry risk factor (I), and a 
residual risk factor (r).  To hedge, we seek a portfolio of proxy assets, emulating the same 
movements according to similar risk factors. To hedge the market risk, we assume we have access 
to an S&P tracking portfolio, which we refer to by the ticker SPX. Next, in an attempt to proxy 
some of the industry risk, we include the FTSE NAREIT Mortgage REIT total return index as well 
as the BBREMTG Mortgage REITs index. 

To determine the quantities of each proxy we need in the portfolio, we assume that changes 
in the CDS prices are related to the price of the CDS, the prices of the proxies, and the changes in 
the prices of the proxies. Mathematically speaking: 

∆CDS! =   f(CDS!,Proxy!,!,… ,Proxy!,!,∆Proxy!,!,… ,∆Proxy!,!) 
We assume the following functional form such that we can estimate relative hedging 

quantities (β), through a linear regression framework: 

∆CDS! =   CDS! β!
∆Proxy!,!
Proxy!,!

!

!!!
+ ε! 

In the linear regression, we effectively regress CDS returns given proxy returns to estimate 
the relative hedging quantities (β): 

∆CDS!
CDS!

=    β!
∆Proxy!,!
Proxy!,!

!

!!!
+ ε′! 

We then rearrange to find the actual hedging quantities (h) as: 

h! =   β!
CDS!
Proxy!,!

 

To evaluate our hedging performance, we simulate the cost of building a replicating 
portfolio, rebalanced weekly.  After determining which quantities of the proxy assets need to be 
purchased, we fund the difference required to match the CDS price. We introduce a leakage term, 
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which approximates the cost of the hedge. This is calculated as the cumulative funding corrections 
plus the funding required to purchase the proxies, accrued each day by the interest rate. We 
additionally add transaction costs which are calculated as 0.1% of the notional traded through 
funding bonds or asset purchases. 

Unfortunately, this initial approach was not successful. We attribute this to three likely 
reasons. First, the CDS is likely non-linearly related to our hedging proxies. For example, the 
expected relative changes in CDS price may change according to its price. Second, our hedging 
estimation requires variance in both the CDS and our proxies. During the time prior to 2008, the 
CDS shows very little variance, and thus makes it difficult to get an accurate hedging quantity 
estimate. Third, we are finding quantity estimates cross-sectionally, while it may be the case that 
either the CDS or the proxies have different response times to shocks in the risk factors.  

To alleviate the first problem of non-linearities, we note that locally in time, the CDS 
sensitivity to our proxies should remain effectively stable. Therefore, our hedging parameters 
estimated within this local window should be more reliable at the current CDS price, given enough 
data. To exploit this, we additionally estimate hedging quantities with an exponentially weighted 
regression in time. We choose a half-life of 20 days, such that squared residuals 20 days ago 
penalize the fitted parameters half as much as today. 

We find that this provides a noticeable improvement to our hedging performance, however, 
still leaves plenty of room for further improvement. Mainly, the hedge still does a poor job during 
late 2007, when losses in the CDS market occur weeks before big drops in the FTSE NAREIT 
Mortgage REIT Index and the BBREMTG Index. Our hedging strategy will not take full advantage 
of this lagged reaction, as we are estimating the hedging ratios cross-sectionally, and perhaps not 
modeling the full co-dependencies that may exist.  

We additionally attempt a hedge under the assumption that the within a reasonably window 
of time, the sensitivities of each asset to the risk factors is approximately constant or in other words, 
the CDS and proxies are effectively locally co-integrated. Then, through a Taylor Series 
approximation: 

CDS! = CDS! + ∆CDS!
!!!
!!!  ≈ CDS! +

!!"#!
!!

∆m+ !!"#!
!!

∆I+ !!"#!
!!

∆r!!!
!!!  

Proxy! = ≈ Proxy!,! +
!!"#$%!
!!

∆m+ !!"#$%!
!!

∆I+ !!"#$%!
!!

∆r!!!
!!!  

Under this assumption, we estimate the hedging quantities using our exponentially weighted 
regression using a 20 day half-life: 

CDS! = β! + β!FNMRTR!   + β!BBREMTG!  +  β!SPX! + ε!  (2) 
We find this method provides superior hedging performance, although it dips very early in 

late 2007, once the proxies similarly feel a shock a few weeks later, the hedge seems to do well in 
mitigating much of the loss over time. 
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Chapter 5  

Summary 

In this paper, we first proposed a hazard rate model to simulate the fundamental CDS price. 
This analysis on the ABX AAA 2006-2 index shows that the market actually diverges significantly 
from fundamentals. This echoes the concern that mark-to-market accounting may exacerbate the 
severity of a financial crisis. As a result, investors must be aware of their mark-to-market risk, as it 
may affect their regulatory capital requirements and the timing of liquidations. 

To estimate the correct level of capital reserves, we built up a factor model which may 
explain the excessive fluctuation of the bond beyond its fundamental value. We performed a Kupiec 
test to access the model’s predictive performance out of the sample. Our results show that if we 
assume a normal distribution of the factor returns, the model systematically underestimates the level 
of VaR. However, we found that the factor VaR model with Student-t distribution does a 
satisfactory job of describing the VaR distribution. Surprisingly, while adding a quadratic term and 
using a GARCH(1,1) model better explains the market movement in-sample, it did not improve the 
VaR prediction out-of-sample in a way that is statistically significant.  

In order to define the stressed period unambiguously, we introduce a hidden Markov regime 
switching approach. The model picked 2008/09/03~2009/09/01 as the most stressed 250-day 
periods without any arbitrary threshold to distinguish among different regimes. With these tools, 
investors can easily calculate the appropriate level of reserve. At last, we proposed a regression-
based hedging model, which proved be effective in hedging CDS instruments. 
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